• 제목/요약/키워드: optical depth

검색결과 883건 처리시간 0.031초

광공진 현상을 이용한 입체 영상센서 및 신호처리 기법 (Optical Resonance-based Three Dimensional Sensing Device and its Signal Processing)

  • 박용화;유장우;박창영;윤희선
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2013년도 추계학술대회 논문집
    • /
    • pp.763-764
    • /
    • 2013
  • A three-dimensional image capturing device and its signal processing algorithm and apparatus are presented. Three dimensional information is one of emerging differentiators that provides consumers with more realistic and immersive experiences in user interface, game, 3D-virtual reality, and 3D display. It has the depth information of a scene together with conventional color image so that full-information of real life that human eyes experience can be captured, recorded and reproduced. 20 Mega-Hertz-switching high speed image shutter device for 3D image capturing and its application to system prototype are presented[1,2]. For 3D image capturing, the system utilizes Time-of-Flight (TOF) principle by means of 20MHz high-speed micro-optical image modulator, so called 'optical resonator'. The high speed image modulation is obtained using the electro-optic operation of the multi-layer stacked structure having diffractive mirrors and optical resonance cavity which maximizes the magnitude of optical modulation[3,4]. The optical resonator is specially designed and fabricated realizing low resistance-capacitance cell structures having small RC-time constant. The optical shutter is positioned in front of a standard high resolution CMOS image sensor and modulates the IR image reflected from the object to capture a depth image (Figure 1). Suggested novel optical resonator enables capturing of a full HD depth image with depth accuracy of mm-scale, which is the largest depth image resolution among the-state-of-the-arts, which have been limited up to VGA. The 3D camera prototype realizes color/depth concurrent sensing optical architecture to capture 14Mp color and full HD depth images, simultaneously (Figure 2,3). The resulting high definition color/depth image and its capturing device have crucial impact on 3D business eco-system in IT industry especially as 3D image sensing means in the fields of 3D camera, gesture recognition, user interface, and 3D display. This paper presents MEMS-based optical resonator design, fabrication, 3D camera system prototype and signal processing algorithms.

  • PDF

AERONET 선포토미터 데이터를 이용한 동북아시아 지역 대기 에어로졸 종류별 광학적 농도 변화 특성 연구 (A Study on the Variation of Aerosol Optical Depth according to Aerosol Types in Northeast Asia using Aeronet Sun/Sky Radiometer Data)

  • 노영민
    • 한국대기환경학회지
    • /
    • 제34권5호
    • /
    • pp.668-676
    • /
    • 2018
  • This study has developed a technique to divide the aerosol optical depth of the entire aerosol (${\tau}_{total}$) into the dust optical depth (${\tau}_D$) and the pollution particle optical depth (${\tau}_P$) using the AERONET sun/sky radiometer data provided in Version 3. This method was applied to the analysis of AERONET data observed from 2006 to 2016 in Beijing, China, Seoul and Gosan, Korea and Osaka, Japan and the aerosol optical depth trends of different types of atmospheric aerosols in Northeast Asia were analyzed. The annual variation of ${\tau}_{total}$ showed a tendency to decrease except for Seoul where observation data were limited. However, ${\tau}_D$ tended to decrease when ${\tau}_{total}$ were separated as ${\tau}_D$ and ${\tau}_P$, but ${\tau}_P$ tended to increase except for Osaka. This is because the concentration of airborne aerosols, represented by Asian dust in Northeast Asia, is decreased in both mass concentration and optical concentration. However, even though the mass concentration of pollution particles generated by human activity tends to decrease, Which means that the optical concentration represented as aerosol optical depth is increasing in Northeast Asia.

A Derivation of Aerosol Optical Depth Estimates from Direct Normal Irradiance Measurements

  • Yun Gon Lee;Chang Ki Kim
    • 신재생에너지
    • /
    • 제20권1호
    • /
    • pp.79-87
    • /
    • 2024
  • This study introduces a method for estimating Aerosol Optical Depth (AOD) using Broadband Aerosol Optical Depth (BAOD) derived from direct normal irradiance and meteorological factors observed between 2016 and 2017. Through correlation analyses between BAOD and atmospheric components such as Rayleigh scattering, water vapor, and tropospheric nitrogen dioxide, significant relationships were identified, enabling accurate AOD estimation. The methodology demonstrated high correlation coefficients and low Root Mean Square Errors (RMSE) compared to actual AOD500 measurements, indicating that the attenuation effects of water vapor and the direct impact of tropospheric nitrogen dioxide concentration are crucial for precise aerosol optical depth estimation. The application of BAOD for estimating AOD500 across various time scales-hourly, daily, and monthly-showed the approach's robustness in understanding aerosol distributions and their optical properties, with a high coefficient of determination (0.96) for monthly average AOD500 estimates. This study simplifies the aerosol monitoring process and enhances the accuracy and reliability of AOD estimations, offering valuable insights into aerosol research and its implications for climate modeling and air quality assessment. The findings underscore the viability of using BAOD as a surrogate for direct AOD500 measurements, presenting a promising avenue for more accessible and accurate aerosol monitoring practices, crucial for improving our understanding of aerosol dynamics and their environmental impacts.

Optical Flow와 Normalized Cut을 이용한 2차원 동영상의 3차원 동영상 변환 (Three-Dimensional Conversion of Two-Dimensional Movie Using Optical Flow and Normalized Cut)

  • 정재현;박길배;김주환;강진모;이병호
    • 한국광학회지
    • /
    • 제20권1호
    • /
    • pp.16-22
    • /
    • 2009
  • 본 논문에서는 2차원 동영상을 normalized cut과 optical flow를 이용하여 3차원 동영상으로 변환하는 방법을 제안하였다. 이를 통해 특정 디스플레이 장치와 특정 동영상 포맷에 국한되지 않는 2차원 동영상의 3차원 동영상 변환 방법을 제안하였다. 본 연구에서는 2차원 동영상의 3차원 변환을 위하여 먼저 영상을 객체로 분할하고, 분할된 객체의 깊이를 추정하는 방법을 사용하였다. Normalized cut은 영상분할의 한 방법으로, 본 연구에서는 연산속도 향상을 위하여 기존 방법에 watershed 알고리즘을 적용하였고, 정확도 향상을 위하여 가중치에 optical flow를 추가하였다. Normalized cut을 이용하여 분할된 영상의 깊이 정보를 추정하기 위하여 optical flow를 이용하였다. Optical flow의 차이를 통해 정의할 수 있는 가려진 영역의 분할 영상 변화를 통해 순서적 깊이 정보를 추정한다. 추정된 순서적 깊이를 보정하기 위해 optical flow의 절대적 크기를 이용해 운동시차로 상대적 깊이를 추정하였다. 최종적으로 추정된 깊이 정보는 순서적 깊이와 상대적 깊이의 곱을 평균 optical flow로 나누어, 순서적 깊이의 차이를 보정하였다. 제안한 방법의 검증을 위하여 2차원 동영상을 3차원 동영상으로 변환하여 깊이 정보가 추정됨을 확인하였다.

Optical flow의 레벨 간소화 및 노이즈 제거와 에지 정보를 이용한 2D/3D 변환 기법 (2D/3D image Conversion Method using Simplification of Level and Reduction of Noise for Optical Flow and Information of Edge)

  • 한현호;이강성;이상훈
    • 한국산학기술학회논문지
    • /
    • 제13권2호
    • /
    • pp.827-833
    • /
    • 2012
  • 본 논문은 2D/3D 변환에서 깊이정보 생성을 위해 연산량을 감소시키는 레벨 간소화 기법을 적용하고 객체의 고유벡터를 이용하여 노이즈를 제거한 Optical flow를 이용하는 방법을 제안한다. Optical flow는 깊이정보를 생성하기 위한 방법 중 하나로 두 프레임간의 픽셀의 변화 벡터 값을 나타내어 움직임 정보를 나타내며 픽셀 단위로 처리하므로 정확도가 높다. 그러나 픽셀 단위 연산으로 긴 연산 시간이 소요되며 모든 픽셀을 연산하는 특성상 노이즈가 생길 수 있는 문제점이 있다. 본 논문에서는 이를 해결하기 위해 레벨 간소화 과정을 거쳐 연산 시간을 단축하였고 Optical flow를 영상에서 고유벡터를 갖는 영역에만 적용하여 노이즈를 제거한 뒤 배경 영역에 대한 깊이 정보를 에지 영상을 이용하여 생성하는 방법을 제안하였다. 제안한 방법으로 깊이정보를 생성한 뒤 DIBR(Depth Image Based Rendering)으로 2차원 영상을 3차원 입체 영상으로 변환하였고 SSIM(Structural SIMilarity index)으로 최종 생성된 영상의 오차율을 분석하였다.

Fast Holographic Image Reconstruction Using Phase-Shifting Assisted Depth Detection Scheme for Optical Scanning Holography

  • Lee, Munseob;Min, Gihyeon;Kim, Nac-Woo;Lee, Byung Tak;Song, Je-Ho
    • ETRI Journal
    • /
    • 제38권4호
    • /
    • pp.599-605
    • /
    • 2016
  • For the implementation of a real-time holographic camera, fast and automatic holographic image reconstruction is an essential technology. In this paper, we propose a new automatic depth-detection algorithm for fast holography reconstruction, which is particularly useful for optical scanning holography. The proposed algorithm is based on the inherent phase difference information in the heterodyne signals, and operates without any additional optical or electrical components. An optical scanning holography setup was created using a heterodyne frequency of 4 MHz with a 500-mm distance and 5-mm depth resolution. The reconstruction processing time was measured to be 0.76 s, showing a 62% time reduction compared to a recent study.

자동 표면 결함검사 시스템에서 Retro 광학계를 이용한 3D 깊이정보 측정방법 (Linear System Depth Detection using Retro Reflector for Automatic Vision Inspection System)

  • 주영복
    • 반도체디스플레이기술학회지
    • /
    • 제21권4호
    • /
    • pp.77-80
    • /
    • 2022
  • Automatic Vision Inspection (AVI) systems automatically detect defect features and measure their sizes via camera vision. It has been populated because of the accuracy and consistency in terms of QC (Quality Control) of inspection processes. Also, it is important to predict the performance of an AVI to meet customer's specification in advance. AVI are usually suffered from false negative and positives. It can be overcome by providing extra information such as 3D depth information. Stereo vision processing has been popular for depth extraction of the 3D images from 2D images. However, stereo vision methods usually take long time to process. In this paper, retro optical system using reflectors is proposed and experimented to overcome the problem. The optical system extracts the depth without special SW processes. The vision sensor and optical components such as illumination and depth detecting module are integrated as a unit. The depth information can be extracted on real-time basis and utilized and can improve the performance of an AVI system.

The Effect of an Optical Clearing Agent on Tissue Prior to 1064-nm Laser Therapy

  • Youn, Jong-In
    • Medical Lasers
    • /
    • 제10권3호
    • /
    • pp.146-152
    • /
    • 2021
  • Background and Objectives Although lasers have been widely applied in tissue treatment, the light penetration depth in tissues is limited by the tissue turbidity and affected by its absorption and scattering characteristics. This study investigated the effect of using an optical clearing agent (OCA) on tissue to improve the therapeutic effect of 1064 nm wavelength laser light by reducing the heat generated on the skin surface and increasing the penetration depth. Materials and Methods A diode laser (λ = 1064 nm) was applied to a porcine specimen with and without OCA to investigate the penetration depth of the laser light and temperature distribution. A numerical simulation using the finite element method was performed to investigate the temperature distribution of the specimen compared to ex-vivo experiments using a thermocouple and double-integrating sphere to measure the temperature profile and optical properties of the tissue, respectively. Results Simulation results showed a decrease in tissue surface temperature with increased penetration depth when the OCA was applied. Furthermore, both absorption and scattering coefficients decreased with the application of OCA. In ex-vivo experiments, temperatures decreased for the tissue surface and the fat layer with the OCA, but not for the muscle layer. Conclusion The use of an OCA may be helpful for reducing surface heat generation and enhance the light penetration depth in various near-infrared laser treatments.

Athermal and Achromatic Design for a Night Vision Camera Using Tolerable Housing Boundary on an Expanded Athermal Glass Map

  • Ahn, Byoung-In;Kim, Yeong-Sik;Park, Sung-Chan
    • Current Optics and Photonics
    • /
    • 제1권2호
    • /
    • pp.125-131
    • /
    • 2017
  • We propose a new graphical method for selecting a pair of optical and housing materials to simultaneously athermalize and achromatize an LWIR optical system. To have a much better opportunity to select the IR glasses and housing materials, an athermal glass map is expanded by introducing the DOE with negative chromatic power. Additionally, from the depth of focus in an LWIR optical system, the tolerable housing boundary is provided to realize an athermal and achromatic system even for not readily available housing material. Thus, we can effectively determine a pair of optical and housing materials by reducing the thermal shift to be less than the depth of focus. By applying this method to design a night vision camera lens, the chromatic and thermal defocuses are reduced to less than the depth of focus, over the specified waveband and temperature ranges.

광 스캐닝 홀로그램 현미경에서 부분 영역 해석을 통한 자동 초점 (Auto-focus of Optical Scanning Holographic Microscopy Using Partial Region Analysis)

  • 김유석;김태근
    • 한국광학회지
    • /
    • 제22권1호
    • /
    • pp.10-15
    • /
    • 2011
  • 본 논문에서 홀로그램의 일부 영역만을 선택하여 자동 초점 맺는 방법을 제안하고 이를 실험적으로 보였다. 먼저 광 스캐닝 홀로그래피를 이용하여 복소 홀로그램을 추출한다. 그 다음 홀로그램의 일부 영역만을 선택하고 가우시안 저대역 필터링, Real-only 홀로그램 합성, Power fringe-adjusted 필터링, 주파수축 변환 등의 과정을 통해 깊이 정보를 추출한다. 이렇게 추출된 깊이 위치를 이용하여 홀로그램을 자동적으로 복원하게 된다.