• Title/Summary/Keyword: opportunistic access

Search Result 70, Processing Time 0.028 seconds

Statistically Controlled Opportunistic Resource Block Sharing for Femto Cell Networks

  • Shin, Dae Kyu;Choi, Wan;Yu, Takki
    • Journal of Communications and Networks
    • /
    • v.15 no.5
    • /
    • pp.469-475
    • /
    • 2013
  • In this paper, we propose an efficient interference management technique which controls the number of resource blocks (or subcarriers) shared with other cells based on statistical interference levels among cells. The proposed technique tries to maximize average throughput of a femto cell user under a constraint on non-real time control of a femto cell network while guaranteeing a target throughput value of a macro cell user. In our proposed scheme, femto cells opportunistically use resource blocks allocated to other cells if the required average user throughput is not attained with the primarily allocated resource blocks. The proposed method is similar to the underlay approach in cognitive radio systems, but resource block sharing among cells is statistically controlled. For the statistical control, a femto cell sever constructs a table storing average mutual interference among cells and periodically updates the table. This statistical approach fully satisfies the constraint of non-real time control for femto cell networks. Our simulation results show that the proposed scheme achieves higher average femto user throughput than conventional frequency reuse schemes for time varying number of users.

Power Saving and Improving the Throughput of Spectrum Sharing in Wideband Cognitive Radio Networks

  • Li, Shiyin;Xiao, Shuyan;Zhang, Maomao;Zhang, Xiaoguang
    • Journal of Communications and Networks
    • /
    • v.17 no.4
    • /
    • pp.394-405
    • /
    • 2015
  • This paper considers a wideband cognitive radio network which can simultaneously sense multiple narrowband channels and thus aggregate the detected available channels for transmission and proposes a novel cognitive radio system that exhibits improved sensing throughput and can save power consumption of secondary user (SU) compared to the conventional cognitive radio system studied so far. More specifically, under the proposed cognitive radio system, we study the problem of designing the optimal sensing time and power allocation strategy, in order to maximize the ergodic throughput of the proposed cognitive radio system under two different schemes, namely the wideband sensing-based spectrum sharing scheme and the wideband opportunistic spectrum access scheme. In our analysis, besides the average interference power constraint at primary user, the average transmit power constraint of SU is also considered for the two schemes and then a subgradient algorithm is developed to obtain the optimal sensing time and the corresponding power allocation strategy. Finally, numerical simulations are presented to verify the performance of the two proposed schemes.

Power Allocation in Heterogeneous Networks: Limited Spectrum-Sensing Ability and Combined Protection

  • Ma, Yuehuai;Xu, Youyun;Zhang, Dongmei
    • Journal of Communications and Networks
    • /
    • v.13 no.4
    • /
    • pp.360-366
    • /
    • 2011
  • In this paper, we investigate the problem of power allocation in a heterogeneous network that is composed of a pair of cognitive users (CUs) and an infrastructure-based primary network. Since CUs have only limited effective spectrum-sensing ability and primary users (PUs) are not active all the time in all locations and licensed bands, we set up a new multi-area model to characterize the heterogeneous network. A novel combined interference-avoidance policy corresponding to different PU-appearance situations is introduced to protect the primary network from unacceptable disturbance and to increase the spectrum secondary-reuse efficiency. We use dual decomposition to transform the original power allocation problem into a two-layer optimization problem. We propose a low-complexity joint power-optimizing method to maximize the transmission rate between CUs, taking into account both the individual power-transmission constraints and the combined interference power constraint of the PUs. Numerical results show that for various values of the system parameters, the proposed joint optimization method with combined PU protection is significantly better than the opportunistic spectrum access mode and other heuristic approaches.

Partly Random Multiple Weighting Matrices Selection for Orthogonal Random Beamforming

  • Tan, Li;Li, Zhongcai;Xu, Chao;Wang, Desheng
    • Journal of Communications and Networks
    • /
    • v.18 no.6
    • /
    • pp.892-901
    • /
    • 2016
  • In the multi-user multiple-input multiple-output (MIMO) system, orthogonal random beamforming (ORBF) scheme is proposed to serve multiple users simultaneously in order to achieve the multi-user diversity gain. The opportunistic space-division multiple access system (OSDMA-S) scheme performs multiple weighting matrices during the training phase and chooses the best weighting matrix to be used to broadcast data during the transmitting phase. The OSDMA-S scheme works better than the original ORBF by decreasing the inter-user interference during the transmitting phase. To save more time in the training phase, a partly random multiple weighting matrices selection scheme is proposed in this paper. In our proposed scheme, the Base Station does not need to use several unitary matrices to broadcast pilot symbol. Actually, only one broadcasting operation is needed. Each subscriber generates several virtual equivalent channels with a set of pre-saved unitary matrices and the channel status information gained from the broadcasting operation. The signal-to-interference and noise ratio (SINR) of each beam in each virtual equivalent channel is calculated and fed back to the base station for the weighting matrix selection and multi-user scheduling. According to the theoretical analysis, the proposed scheme relatively expands the transmitting phase and reduces the interactive complexity between the Base Station and subscribers. The asymptotic analysis and the simulation results show that the proposed scheme improves the throughput performance of the multi-user MIMO system.

Cooperative spectrum leasing using parallel communication of secondary users

  • Xie, Ping;Li, Lihua;Zhu, Junlong;Jin, Jin;Liu, Yijing
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.8
    • /
    • pp.1770-1785
    • /
    • 2013
  • In this paper, a multi-hop transmission protocol based on parallel communication of secondary users (SUs) is proposed. The primary multi-hop network coexists with a set of SUs by cooperative spectrum sharing. The main optimization target of our protocol is the overall performance of the secondary system with the guarantee of the primary outage performance. The energy consumption of the primary system is reduced by the cooperation of SUs. The aim of the primary source is to communicate with the primary destination via a number of primary relays. SUs may serve as extra decode-and-forward relays for the primary network. When an SU acts as a relay for a primary user (PU), some other SUs that satisfy the condition for parallel communication are selected to simultaneously access the primary spectrum for secondary transmissions. For the proposed protocol, two opportunistic routing strategies are proposed, and a search algorithm to select the SUs for parallel communication is described. The throughput of the SUs and the PU is illustrated. Numerical results demonstrate that the average throughput of the SUs is greatly improved, and the end-to-end throughput of the PU is slightly increased in the proposed protocol when there are more than seven SUs.

Implementation and Measurement of Spectrum Sensing for Cognitive Radio Networks Based on LoRa and GNU Radio

  • Tendeng, Rene;Lee, YoungDoo;Koo, Insoo
    • International journal of advanced smart convergence
    • /
    • v.7 no.3
    • /
    • pp.23-36
    • /
    • 2018
  • In wireless communication, efficient spectrum usage is an issue that has been an attractive research area for many technologies. Recently new technologies innovations allow compact radios to transmit with power efficient communication over very long distances. For example, Low-Power Wide Area Networks (LPWANs) are an attractive emerging platform to connect the Internet-of-Things (IoT). Especially, LoRa is one of LPWAN technologies and considered as an infrastructure solution for IoT. End-devices use LoRa protocol across a single wireless hop to communicate to gateway(s) connected to the internet which acts as a bridge and relays message between these LoRa end-devices to a central network server. The use of the (ISM) spectrum sharing for such long-range networking motivates us to implement spectrum sensing testbed for cognitive radio network based on LoRa and GNU radio. In cognitive radio (CR), secondary users (SUs) are able to sense and use this information to opportunistically access the licensed spectrum band in absence of the primary users (PUs). In general, PUs have not been very receptive of the idea of opportunistic spectrum sharing. That is, CR will harmfully interfere with operations of PUs. Subsequently, there is a need for experimenting with different techniques in a real system. In this paper, we implemented spectrum sensing for cognitive radio networks based on LoRa and GNU Radio, and further analyzed corresponding performances of the implemented systems. The implementation is done using Microchip LoRa evolution kits, USRPs, and GNU radio.

A Sensing Node Selection Scheme for Energy-Efficient Cooperative Spectrum Sensing in Cognitive Radio Sensor Networks (인지 무선 센서 네트워크에서 에너지 효율적인 협력 스펙트럼 센싱을 위한 센싱 노드 선택 기법)

  • Kong, Fanhua;Jin, Zilong;Cho, Jinsung
    • Journal of KIISE
    • /
    • v.43 no.1
    • /
    • pp.119-125
    • /
    • 2016
  • Cognitive radio technology can allow secondary users (SUs) to access unused licensed spectrums in an opportunistic manner without interfering with primary users (PUs). Spectrum sensing is a key technology for cognitive radio (CR). However, few studies have examined energy-efficient spectrum sensing in cognitive radio sensor networks (CRSNs). In this paper, we propose an energy-efficient cooperative spectrum sensing nodes selection scheme for cluster-based cognitive radio sensor networks. In our proposed scheme, false alarm probability and energy consumption are considered to minimize the number of spectrum sensing nodes in a cluster. Simulation results show that by applying the proposed scheme, spectrum sensing efficiency is improved with a decreased number of spectrum sensing nodes. Furthermore, network energy efficiency is guaranteed and network lifetime is substantially prolonged.

A Minimum Energy Consuming Mobile Device Relay Scheme for Reliable QoS Support

  • Chung, Jong-Moon;Kim, Chang Hyun;Lee, Daeyoung
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.2
    • /
    • pp.618-633
    • /
    • 2014
  • Relay technology is becoming more important for mobile communications and wireless internet of things (IoT) networking because of the extended access network coverage range and reliable quality of service (QoS) it can provide at low power consumption levels. Existing mobile multihop relay (MMR) technology uses fixed-point stationary relay stations (RSs) and a divided time-frame (or frequency-band) to support the relay operation. This approach has limitations when a local fixed-point stationary RS does not exist. In addition, since the time-frame (or frequency-band) channel resources are pre-divided for the relay operation, there is no way to achieve high channel utilization using intelligent opportunistic techniques. In this paper, a different approach is considered, where the use of mobile/IoT devices as RSs is considered. In applications that use mobile/IoT devices as relay systems, due to the very limited battery energy of a mobile/IoT device and unequal channel conditions to and from the RS, both minimum energy consumption and QoS support must be considered simultaneously in the selection and configuration of RSs. Therefore, in this paper, a mobile RS is selected and configured with the objective of minimizing power consumption while satisfying end-to-end data rate and bit error rate (BER) requirements. For the RS, both downlink (DL) to the destination system (DS) (i.e., IoT device or user equipment (UE)) and uplink (UL) to the base station (BS) need to be adaptively configured (using adaptive modulation and power control) to minimize power consumption while satisfying the end-to-end QoS constraints. This paper proposes a minimum transmission power consuming RS selection and configuration (MPRSC) scheme, where the RS uses cognitive radio (CR) sub-channels when communicating with the DS, and therefore the scheme is named MPRSC-CR. The proposed MPRSC-CR scheme is activated when a DS moves out of the BS's QoS supportive coverage range. In this case, data transmissions between the RS and BS use the assigned primary channel that the DS had been using, and data transmissions between the RS and DS use CR sub-channels. The simulation results demonstrate that the proposed MPRSC-CR scheme extends the coverage range of the BS and minimizes the power consumption of the RS through optimal selection and configuration of a RS.

An contention-aware ordered sequential collaborative spectrum sensing scheme for CRAHN (무선인지 애드 혹 네트워크를 위한 순차적 협력 스펙트럼 센싱 기법)

  • Nguyen-Thanh, Nhan;Koo, In-Soo
    • Journal of Internet Computing and Services
    • /
    • v.12 no.4
    • /
    • pp.35-43
    • /
    • 2011
  • Cognitive Radio (CR) ad hoc network is highly considered as one of promising future ad hoc networks, which enables opportunistic access to under-utilized licensed spectrum. Similarly to other CR networks, the spectrum sensing is a prerequisite in CR ad hoc network. Collaborative spectrum sensing can help increasing sensing performance. For such an infrastructureless network, however the coordination for the sensing collaboration is really complicated due to the lack of a central controller. In this paper, we propose a novel collaborative spectrum sensing scheme in which the final decision is made by the node with the highest data reliability based on a sequential Dempster Shafer theory. The collaboration of sensing data is also executed by the proposed contention-aware reporting mechanism which utilizes the sensing data reliability order for broadcasting spectrum sensing result. The proposed method reduces the collecting time and the overhead of the control channel due to the efficiency of the ordered sequential combination while keeping the same sensing performance in comparison with the conventional cooperative centralized spectrum sensing scheme.

Study on Characteristic Factors of Female Entrepreneurs for Vitalization of Female Entrepreneurship: Focusing on Case Studies (여성창업 활성화를 위한 여성창업가의 특성요인에 관한 연구: 사례연구를 중심으로)

  • Kim, Yun-Sun;Lee, Il-Han
    • Asia-Pacific Journal of Business Venturing and Entrepreneurship
    • /
    • v.17 no.5
    • /
    • pp.49-65
    • /
    • 2022
  • This study conducted an exploratory study based on in-depth interviews to understand the characteristics and capabilities of female entrepreneurs to promote women entrepreneurship. Therefore, in this study, through in-depth interviews with eight female entrepreneurs, the main contents of entrepreneurial attitudes (need for independence, development desire, favorable conditions), start-up entry rate, start-up motivation, start-up activities and constraints were analyzed. As a result, first, it was found that the entrepreneurial attitude of female entrepreneurs has a strong motivation for successful management based on a feeling of self-satisfaction, has characteristics that prioritize independence and self-actualization, and favorable conditions for starting a business are important. Second, it was found that women's individual differences from men and social structural factors had no significant effect on the entry rate of women. Third, it was found that the most important entrepreneurship motivation for women is the spirit of challenge, self-satisfaction, and the desire to balance work and family. Fourth, female entrepreneurs showed little difference in perception between male and female entrepreneurs in terms of resource access, but there was some discrimination in the network. Fifth, the main industries of female entrepreneurs are small businesses, and there is a tendency to be concentrated in industries with low profit margins and low growth and sales. Finally, it was found that barriers to women's entrepreneurship still exist. Based on the results of this study, the following implications are suggested. First, this study is differentiated in that it mainly identified the characteristics of women's experiences and social environments while starting a business and running a business. Second, in the case of female entrepreneurs, there is a need to spread a positive awareness of women entrepreneurship by arguing that the barriers to entrepreneurship unique to women are not high and can be sufficiently overcome. Lastly, although opportunistic start-ups based on women's social experience or management ability in work life are important for women's entrepreneurship, government support policies are needed to promote professional technology start-ups.