• Title/Summary/Keyword: opioid receptors

Search Result 100, Processing Time 0.02 seconds

Effect of sec-O-glucosylhamaudol on mechanical allodynia in a rat model of postoperative pain

  • Koh, Gi-Ho;Song, Hyun;Kim, Sang Hun;Yoon, Myung Ha;Lim, Kyung Joon;Oh, Seon-Hee;Jung, Ki Tae
    • The Korean Journal of Pain
    • /
    • v.32 no.2
    • /
    • pp.87-96
    • /
    • 2019
  • Background: This study was performed in order to examine the effect of intrathecal sec-O-glucosylhamaudol (SOG), an extract from the root of the Peucedanum japonicum Thunb., on incisional pain in a rat model. Methods: The intrathecal catheter was inserted in male Sprague-Dawley rats (n = 55). The postoperative pain model was made and paw withdrawal thresholds (PWTs) were evaluated. Rats were randomly treated with a vehicle (70% dimethyl sulfoxide) and SOG ($10{\mu}g$, $30{\mu}g$, $100{\mu}g$, and $300{\mu}g$) intrathecally, and PWT was observed for four hours. Dose-responsiveness and ED50 values were calculated. Naloxone was administered 10 min prior to treatment of SOG $300{\mu}g$ in order to assess the involvement of SOG with an opioid receptor. The protein levels of the ${\delta}$-opioid receptor, ${\kappa}$-opioid receptor, and ${\mu}$-opioid receptor (MOR) were analyzed by Western blotting of the spinal cord. Results: Intrathecal SOG significantly increased PWT in a dose-dependent manner. Maximum effects were achieved at a dose of $300{\mu}g$ at 60 min after SOG administration, and the maximal possible effect was 85.35% at that time. The medial effective dose of intrathecal SOG was $191.3{\mu}g$ (95% confidence interval, 102.3-357.8). The antinociceptive effects of SOG ($300{\mu}g$) were significantly reverted until 60 min by naloxone. The protein levels of MOR were decreased by administration of SOG. Conclusions: Intrathecal SOG showed a significant antinociceptive effect on the postoperative pain model and reverted by naloxone. The expression of MOR were changed by SOG. The effects of SOG seem to involve the MOR.

Spinal orexin A attenuates opioid-induced mechanical hypersensitivity in the rat

  • Youn, Dong-ho;Jun, Jiyeon;Kim, Tae Wan;Park, Kibeom
    • The Korean Journal of Pain
    • /
    • v.35 no.4
    • /
    • pp.433-439
    • /
    • 2022
  • Background: Repeated administration of opioid analgesics for pain treatment can produce paradoxical hyperalgesia via peripheral and/or central mechanisms. Thus, this study investigated whether spinally (centrally) administered orexin A attenuates opioid-induced hyperalgesia (OIH). Methods: [D-Ala2, N-Me-Phe4, Gly5-ol]-enkephalin (DAMGO), a selective µ-opioid receptor agonist, was used to induce mechanical hypersensitivity and was administered intradermally (4 times, 1-hour intervals) on the rat hind paw dorsum. To determine whether post- or pretreatments with spinal orexin A, dynorphin A, and anti-dynorphin A were effective in OIH, the drugs were injected through an intrathecal catheter whose tip was positioned dorsally at the L3 segment of the spinal cord (5 ㎍ for all). Mechanical hypersensitivity was assessed using von Frey monofilaments. Results: Repeated intradermal injections of DAMGO resulted in mechanical hypersensitivity in rats, lasting more than 8 days. Although the first intrathecal treatment of orexin A on the 6th day after DAMGO exposure did not show any significant effect on the mechanical threshold, the second (on the 8th day) significantly attenuated the DAMGO-induced mechanical hypersensitivity, which disappeared when the type 1 orexin receptor (OX1R) was blocked. However, intrathecal administration of dynorphin or an anti-dynorphin antibody (dynorphin antagonists) had no effect on DAMGO-induced hypersensitivity. Lastly, pretreatment with orexin A, dynorphin, or anti-dynorphin did not prevent DAMGO-induced mechanical hypersensitivity. Conclusions: Spinal orexin A attenuates mechanical hyperalgesia induced by repetitive intradermal injections of DAMGO through OX1R. These data suggest that OIH can be potentially treated by activating the orexin A-OX1R pathway in the spinal dorsal horn.

Antinociceptive profile of the ethanolic extract of andrographis paniculata in mice

  • Sulaiman, MR;Sainan, S;Zakaria, ZA;Somchit, MN;Israf, DA;Moin, S;Mohamad, TA Tengky
    • Advances in Traditional Medicine
    • /
    • v.7 no.4
    • /
    • pp.390-394
    • /
    • 2007
  • The present study was conducted to evaluate the analgesic activity of ethanolic extract of Andrographis paniculata (AP) in mice. The analgesic investigations were carried out using the acetic acid-induced abdominal writhing and the hot-plate tests. It was demonstrated that intraperitoneal (i.p.) administration of the extract at a dose of 30, 100, 300, 500 mg/kg, produced significant inhibition of abdominal constriction induced with 0.6% (v/v) acetic acid in dosedependent manner. It also demonstrated that the extract produced significant dose-dependent increase in the time of latency to a discomfort reaction in the hot-plate model. In addition, the analgesic effect of the ethanolic extract of AP was significantly reversed by a non-specific opioid receptor antagonist, naloxone. These results indicate that AP has an analgesic effect that was mediated through opioid receptors.

Role of nociceptin/orphanin FQ and nociceptin opioid peptide receptor in depression and antidepressant effects of nociceptin opioid peptide receptor antagonists

  • Park, Jong Yung;Chae, Suji;Kim, Chang Seop;Kim, Yoon Jae;Yi, Hyun Joo;Han, Eunjoo;Joo, Youngshin;Hong, Surim;Yun, Jae Won;Kim, Hyojung;Shin, Kyung Ho
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.23 no.6
    • /
    • pp.427-448
    • /
    • 2019
  • Nociceptin/orphanin FQ (N/OFQ) and its receptor, nociceptin opioid peptide (NOP) receptor, are localized in brain areas implicated in depression including the amygdala, bed nucleus of the stria terminalis, habenula, and monoaminergic nuclei in the brain stem. N/OFQ inhibits neuronal excitability of monoaminergic neurons and monoamine release from their terminals by activation of G protein-coupled inwardly rectifying $K^+$ channels and inhibition of voltage sensitive calcium channels, respectively. Therefore, NOP receptor antagonists have been proposed as a potential antidepressant. Indeed, mounting evidence shows that NOP receptor antagonists have antidepressant-like effects in various preclinical animal models of depression, and recent clinical studies again confirmed the idea that blockade of NOP receptor signaling could provide a novel strategy for the treatment of depression. In this review, we describe the pharmacological effects of N/OFQ in relation to depression and explore the possible mechanism of NOP receptor antagonists as potential antidepressants.

The Effect of Treatment with Intrathecal Ginsenosides in a Rat Model of Postoperative Pain (백서를 이용한 수술 후 통증 유발 모형에서 척수강 내로 투여한 Ginsenosides의 효과)

  • Shin, Dong Jin;Yoon, Myung Ha;Lee, Hyung Gon;Kim, Woong Mo;Park, Byung Yun;Kim, Yeo Ok;Huang, Lan Ji;Cui, Jin Hua
    • The Korean Journal of Pain
    • /
    • v.20 no.2
    • /
    • pp.100-105
    • /
    • 2007
  • Background: Ginseng has been used to manage various types of pain in folk medicine. This study characterized the effect of treatment with intrathecal ginsenosides, the active components of ginseng in a postoperative pain model. Methods: Male Sprague-Dawley rats were implanted with lumbar intrathecal catheters. An incision was made in the plantar surface of the hindpaw. Withdrawal thresholds following the application of a von Frey filament to the wound site were measured. To determine the role of the opioid or GABA receptors following treatment with the ginsenosides, naloxone, bicuculline (a $GABA_A$ receptor antagonist), and saclofen (a $GABA_B$ receptor antagonist) were administered intrathecally 10 min before the delivery of the ginsenosides and the changes of the withdrawal thresholds after application of the von Frey filament were Observed. Results: Treatment with the intrathecal ginsenosides increased the withdrawal threshold in a dose dependent manner. Pre-treatment with intrathecal naloxone reversed the antinociceptive effect of the ginsenosides. However, pre-treatment with intrathecal bicuculline and saclofen failed to have an effect on the activity of the ginsenosides. Conclusions: These results suggest that ginsenosides are effective to alleviate the postoperative pain evoked by paw incision. The opioid receptor, but not GABA receptors, may be involved in the antinociceptive action of the ginsenosides at the spinal level.

Opioids and Antidepressants for Pain Control in Musculoskeletal Disease (근골격계 질환에서 통증 조절을 위한 마약성 진통제 및 항우울제)

  • Park, Se-Jin;Kim, Woo Sub;Jang, Taedong
    • Journal of the Korean Orthopaedic Association
    • /
    • v.55 no.1
    • /
    • pp.1-8
    • /
    • 2020
  • The progression of aging and the increase in musculoskeletal diseases have led to an increase in invasive treatment methods, including various surgical methods, but conservative treatment should be attempted before surgical treatment in musculoskeletal diseases. Medication for pain control, such as acetaminophen, non-steroidal anti-inflammatory drugs, steroid, opioids, antidepressants, etc., is one of the most popular methods for pain control. If the pain receptors on peripheral organ are stimulated, pain is transmitted to the brain by the ascending pathway, and the brain then secretes endogenous opioids, such as endorphin, by the descending pathway for pain control. Opioids are substances that act on the opioid receptors, and there are three receptors for opioids. The affinity for each receptor varies according to the tissue and the patient's systemic status. Antidepressants work on the synapses in the central nervous system and its main mechanism is regulation of the ascending pathway. This is mainly effective in chronic pain and neuropathic pain, which is similar in effectiveness to opioids. This review focuses on the effectiveness, method of use, and side effects of opioids and antidepressants.

Effect of Total Ginseng Saponin on the Opioid Receptor Binding in Mouse Brain (Mouse뇌에서 Opioid 수용체 결합력에 미치는 인삼의 영향)

  • Kim, Soo-Kyung;Lee, Seong-Ryong;Park, Chang-Gyo
    • Journal of Ginseng Research
    • /
    • v.19 no.3
    • /
    • pp.219-224
    • /
    • 1995
  • The modulatory effects of total ginseng saponin (TGS) on the 1, 6, and opioid receptor binding in morphine tolerance and dependence were examined in this study. The specific [$^{3}H$]DAGO ([D-$Ala^2$, N-$Mephe^4$, $Glyco^4$] enkephalin) binding was significantly increased in chronic morphine (10 mg/kg, i.p.) treated mouse striatum. The specific [$^{3}H$]DPDPE ([D-$Pen^2$, D-$Pen^5$] enkephalin) binding was ignificantly increased following morphine treatment in the mouse striatum and cortex. Also, an apparent decrease in the affinity of [$^{3}H$]DPN (diprenorphine) was observed after chronic morphine treatment in mouse striatum and cortex. 7GS produced a sleight increase of specific [$^{3}H$]DAGO, [$^{3}H$]DPDPE binding and a significant increase of specific [$^{3}H$]DPN binding in the mouse brain striatum. In cortex, TGS produced an inhibition of specific [$^{3}H$]DAGO and [$^{3}H$]DPDPE binding and increase of the specific [$^{3}H$]DPN binding. The prolonged administration of TGS (25, 50, 100, and 150 mg/kg, i.p., 3 wks) produced an inhibition of increased [$^{3}H$]DAGO specific binding following morphine without significant changes in the agonist binding to and receptors in mouse striatum and cortex. These contracted alterations in $\mu$, $\gamma$ and $\kappa$ opiate receptor binding were dependent in TGS dogs and brain sites.

  • PDF

Brain uptake through the blood-brain barrier, pharmacokinetics and analgesic effect of [$^3$H]Oxytocin in the rat

  • Park, Ji-Hyun;Kang, Young-Sook
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 1998.11a
    • /
    • pp.152-153
    • /
    • 1998
  • Oxytocin (OT) is a neurohypophyseal nonapeptide which plays an important role in CNS function as well as uterine contraction during delivery. Furthermore, recently it has been reported that OT may also have analgesic effect and found that the release of OT is related with opioid receptors, especially $\kappa$ and ${\mu}$.

  • PDF

Mediation of $N-methyl-_D-aspartate$ on Neuropeptide Y Expression Induced by Morphine in Mouse Cerebellum

  • Kwon, Gee-Youn;Kim, Soo-Kyung
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.5 no.6
    • /
    • pp.479-485
    • /
    • 2001
  • The existence of opioid receptors in mammalian cerebellum except human, has not been clearly understood. In the present study, we found that NPY was inducible by morphine in the mouse cerebellar granular and Purkinje cell layers. We performed in situ RT-PCR and immunohistochemistry to characterize the NPY expression. The increase of NPY gene expression by morphine (30 mg/kg, i.p.) was inhibited by pretreatment with not only naloxone (100 mg/kg, i.p.) but also a noncompetitive NMDA antagonist, MK-801 (0.3 mg/kg, i.p.). The competitive NMDA antagonist, AP-5 (0.9 mg/kg, i.p.) slightly attenuated the increased NPY expression by morphine. Also, the finding similar to morphine was shown by NMDA (70 mg/kg, i.p.) treatment. Our results indicate that NPY was inducible by morphine and this might reflect activation of NMDA receptors in granule cells that relay mossy fiber inputs to Purkinje cells via parallel fibers.

  • PDF

Effect of the Volatile Oil of Nigella sativa Seeds and Its Components on Body Temperature of Mice: Elucidation of the Mechanisms of Action

  • Ashour, M.M.;Tahir, K.E.H.El.;Morsi, M.G.;Aba-Alkhail, N.A.
    • Natural Product Sciences
    • /
    • v.12 no.1
    • /
    • pp.14-18
    • /
    • 2006
  • The effect(s) of the volatile oil (VO) of Nigella sativa and its two components, ${\alpha}-pinene$ and ${\rho}-cymene$ on body temperature of male and female conscious mice were studied. Further investigations to delineate the mechanism(s) of action of the observed effect(s) by using various blockers involved in the central regulation of body temperature were made. VO and ${\alpha}-pinene$ caused significant reductions in rectal body temperature at is and 30 minute after treatment. ${\rho}-cymene$ had negligible effect on body temperature of mice. Cyproheptadine inhibited VO and ${\alpha}-pinene-induced$ hypothermia significantly. Nalbuphine inhibited ${\alpha}-pinene-induced$ hypothermia significantly but did not affect VO-induced hypothermia. Droperidol potentiated VO and ${\alpha}-pinene-induced$ hypothermia to a non-significant level; whereas atropine potentiated VO-induced hypothermia non-significantly. The study confirms further the role of serotoninergic receptors in the mechanism(s) of the observed pharmacological effects of the VO of Nigella sativa. It also indicated a possible role of opioid receptors in ${\alpha}-pinene-induced$ hypothermia.