• 제목/요약/키워드: operon

검색결과 285건 처리시간 0.02초

Preliminary construction of a chimeric cellulose operon containing two structural genes coding for CMCase and cellobiase

  • 이동석;황인규;이백락;박무영
    • 한국미생물생명공학회:학술대회논문집
    • /
    • 한국미생물생명공학회 1986년도 추계학술대회
    • /
    • pp.524.1-524
    • /
    • 1986
  • CMCase, a member of cellulose decomposing enzymes, hydrolyze cellulose up to cellobiose. Cellobiase splits cellobiose to glucose units. Therefore, a linkage of the twogenes coding for CMCase and cellobiase on the same plasmid is needed to produce a cellulase complex which can produce glucose from cellulose. A genetic operon in which the two structural genes are under the control of a single promoter would be ideal for this purpose. The present report is on the linking of the two cellulase genes in one plasmid as a preliminary step of the operon construction.

  • PDF

Construction of L-Threonine Overproducing Escherichia coli by Cloning of the Threonine Operon

  • Lee, Jin-Ho;Oh, Jong-Won;Noh, Kap-Soo;Lee, Hyune-Hwan;Lee, Jae-Heung
    • Journal of Microbiology and Biotechnology
    • /
    • 제2권4호
    • /
    • pp.243-247
    • /
    • 1992
  • The thr operon of Escherichia coli TF427, an $\alpha$-amino-$\beta$-hydroxyvaleric acid (AHV)-resistant threonine overproducer, was cloned in a pBluescriptII $KS^+$ plasmid by complementation of E. coli mutants. All clones contained a common 8.8 kb HindIII-generated DNA fragment and complemented the thrA, thrB, and thrC mutants by showing that these clones contained the whole thr operon. This thr operon was subcloned in the plasmid vectors pBR322, pUC18, and pECCG117, an E. coli/Corynebacterium glutamicum shuttle vector, to form recombinant plasmids pBTF11, pUTF25 and pGTF18, respectively. The subcloned thr operon was shown to be present in a 6.0 kb insert. A transformant of E. coli TF125 with pBTF11 showed an 8~11 fold higher aspartokinase I activity, and 15~20 fold higher L-threonine production than TF125, an AHV-sensitive methionine auxotroph. Also, it was found that the aspartokinase I activity of E. coli TF125 harboring pBTF11 was not inhibited by threonine and its synthesis was not repressed by threonine plus isoleucine.

  • PDF

Identification of the mechanism for dehalorespiration of monofluoroacetate in the phylum Synergistota

  • Lex E. X. Leong;Stuart E. Denman;Seungha Kang;Stanislas Mondot;Philip Hugenholtz;Chris S. McSweeney
    • Animal Bioscience
    • /
    • 제37권2_spc호
    • /
    • pp.396-403
    • /
    • 2024
  • Objective: Monofluoroacetate (MFA) is a potent toxin that blocks ATP production via the Krebs cycle and causes acute toxicity in ruminants consuming MFA-containing plants. The rumen bacterium, Cloacibacillus porcorum strain MFA1 belongs to the phylum Synergistota and can produce fluoride and acetate from MFA as the end-products of dehalorespiration. The aim of this study was to identify the genomic basis for the metabolism of MFA by this bacterium. Methods: A draft genome sequence for C. porcorum strain MFA1 was assembled and quantitative transcriptomic analysis was performed thus highlighting a candidate operon encoding four proteins that are responsible for the carbon-fluorine bond cleavage. Comparative genome analysis of this operon was undertaken with three other species of closely related Synergistota bacteria. Results: Two of the genes in this operon are related to the substrate-binding components of the glycine reductase protein B (GrdB) complex. Glycine shares a similar structure to MFA suggesting a role for these proteins in binding MFA. The remaining two genes in the operon, an antiporter family protein and an oxidoreductase belonging to the radical S-adenosyl methionine superfamily, are hypothesised to transport and activate the GrdB-like protein respectively. Similar operons were identified in a small number of other Synergistota bacteria including type strains of Cloacibacillus porcorum, C. evryensis, and Pyramidobacter piscolens, suggesting lateral transfer of the operon as these genera belong to separate families. We confirmed that all three species can degrade MFA, however, substrate degradation in P. piscolens was notably reduced compared to Cloacibacillus isolates possibly reflecting the loss of the oxidoreductase and antiporter in the P. piscolens operon. Conclusion: Identification of this unusual anaerobic fluoroacetate metabolism extends the known substrates for dehalorespiration and indicates the potential for substrate plasticity in amino acid-reducing enzymes to include xenobiotics.

살모넬라가 발현하는 stf 오페론의 조절과 병원성 인자로서의 기능 (Regulation of stf Operon Expression and Its Virulence)

  • 김삼웅;김영희;강호영
    • 생명과학회지
    • /
    • 제15권4호
    • /
    • pp.553-560
    • /
    • 2005
  • stf 오페론은 stfA CDEFG로 구성되며, S. typhimurium과 S. choleraesuis에서는 완전하게 존재한다. 그러나 S. typhi에서는 이 오페론이 결여되어 있고 S. paratyphi A에서는 stfC의 유전자가 돌연변이 되어 있다. 이 섬모는 class 1형태의 섬모로 분류되며, StfD chaperone을 다른 섬모를 구성하는 chaperone들과 비교할 때 각 subunit들의 C-말단 잔기의 분석은 StfD chaperone이 FGS subfamily와 유사한 특성을 보였다. stf 오페론이 lacZYA 유전자와 fusion된 S. typhimurium 돌연변이 균주를 사용하여 MacConkey 고체배지에서 장시간 배양한 후 $Lac^+$ 표현형을 보이는 21 isolate들을 분리하였다. $Lac^+$ 균주들은 34 세대 당 $0.28\~1.75$의 빈도로 발생하였다. 21 isolate들은 구성적으로 stf operon을 발현했지만, 범용의 조절자인 RpoS, OmpR, CpxR등에 의해 조절되지 않았다. Mouse독성 실험에서 S. typhimurium $_X8661$은 야생형인 $_X3761$에 비교하여 6.7배의 약독화를 보였다.

Disruptions of Two Apparent rho-Independent Transcription Terminator Structures do not help in Enhancing the Expression of aceK in E. coli

  • Lee, Su-Ji;Chung, Taeo-Wan
    • BMB Reports
    • /
    • 제28권5호
    • /
    • pp.458-463
    • /
    • 1995
  • Two apparent rho-independent transcription terminator structures within the coding sequence of aceK have been destroyed to access their roles in the differential expression between aceA and aceK in the glyoxylate bypass operon of E. coli. The effect of mutations on the expression of aceK was evaluated in two different ways: one by maxicell labeling and the other by lacZ fusion gene construction. The maxicell labeling experiment with the mutant operon clones has failed, like that of the wild type operon clone, to visibly show isocitrate dehrogenase (IDH) kinase/phosphatase, the product of aceK, on the autoradiogram of a protein gel. When the same mutations were introduced into an aceK::lacZ fusion gene to quantitatively evaluate the mutational effect, the activity of ${\beta}-galactosidase$ in neither of the mutant versions of the fusion gene was elevated significantly enough to explain the degree of polarity observed in this region. Thus, we conclude that neither of these intragenic, apparent rho-independent transcription terminator structures, which have long been suspected as a major determinant in the down regulation of aceK, really act as a premature transcriptional terminator.

  • PDF

Klebsiella pneumoniae에서 트립토판 생산증대를 위한 숙주개발 및 재조합 trp plasmid의 발현 (Modigication of host cells and Expression of Recombinant E. coli trp plasmids for the increased Production of Tryptophan in Klebsiella pneumoniae)

  • 지연태;홍광원;박장현;이세영
    • 미생물학회지
    • /
    • 제25권1호
    • /
    • pp.46-51
    • /
    • 1987
  • In order to increase the production of tryptophan by maximizing expression of recombinant trp plasmid, Klebsiella pneumoniae KC 105(pheA tyrA trpE trpR tyrR) was genetically modified. KC 107, inosine monophospate(IMP) auxotroph from KC 105 and KC 108, histidine(His) auxotroph from KC 107 were also derived respectively to increase phosphoribosylpyrophosphate(PRPP) production which is required for tryptophan biosynthesis. From KC 107 phosphoribosylpyrophosphate consumption which is required for tryptophan biosynthesis. From KC 107 and KC 108, KC 109 and KC 110, both arginine auxotrophs were derived respectively. To investigate the expression of recombinant trp plasmid in the selected K. pneumoniae mutants, the auxotrophic mutants were transformed with recombinant trp plasmids pSC 101-$trpE^{FBR}$, pSC 101-trpL(.DELTA.att) $trpE^{FBR}$ (pSC 101-trp-AF). Amount of tryptophan produced and activities of tryptophan synthase of $trpR^{-}$ mutant (KC 100) and $tyrR^{-}$ mutnat(KC 105) containing recombinant plasmid pSC 101-trp operon were increased by 30-40% as compared with KC 99(pheA tyrA trpE) containing recombinant plasmid pSC 101-trp operon. Activities of tryptophan synthase and production of tryptophan of KC 108 ($His^{-}$) and KC 109($Arg^{-}$) containing recombinant plasmid pSC 101-trp operon were increase by two-fold as compared with KC 107 containing pSC 101-trp operon.

  • PDF

Molecular Analysis of the Salmonella Typhimurium tdc Operon Regulation

  • Kim, Min-Jeong;Lim, Sang-Yong;Ryu, Sang-Ryeol
    • Journal of Microbiology and Biotechnology
    • /
    • 제18권6호
    • /
    • pp.1024-1032
    • /
    • 2008
  • Efficient expression of the Salmonella Typhimurium tdc ABCDEG operon involved in the degradation of L-serine and L-threonine requires TdcA, the transcriptional activator of the tdc operon. We found that the tdcA gene was transiently activated when the bacterial growth condition was changed from aerobic to anaerobic, but this was not observed if Salmonella was grown anaerobically from the beginning of the culture. Expression kinetics of six tdc genes after anaerobic shock demonstrated by a real-time PCR assay showed that the tdc CDEG genes were not induced in the tdcA mutant but tdcB maintained its inducibility by anaerobic shock even in the absence of tdcA, suggesting that an additional unknown transcriptional regulation may be working for the tdcB expression. We also investigated the effects of nucleoid-associated proteins by primer extension analysis and found that H-NS repressed tdcA under anaerobic shock conditions, and fis mutation delayed the peak expression time of the tdc operon. DNA microarray analysis of genes regulated by TdcA revealed that the genes involved in N-acetylmannosamine, maltose, and propanediol utilization were significantly induced in a tdcA mutant. These findings suggest that Tdc enzymes may playa pivotal role in energy metabolism under a sudden change of oxygen tension.

Genetic Structure of xyl Gene Cluster Responsible for Complete Degradation of (4-Chloro )Benzoate from Pseudomonas sp. S-47

  • Park, Dong-Woo;Lee, Kyoung;Chae, Jong-Chan;Kudo, Toshiaki;Kim, Chi-Kyung
    • Journal of Microbiology and Biotechnology
    • /
    • 제14권3호
    • /
    • pp.483-489
    • /
    • 2004
  • Pseudomonas sp. S-47 is a bacterium capable of degrading benzoate as well as 4-chlorobenzoate (4CBA). Benzoate and 4CBA are known to be degraded via a meta-cleavage pathway characterized by a series of enzymes encoded by xyl genes. The meta-cleavage pathway operon in Pseudomonas sp. S-47 encodes a set of enzymes which transform benzoate and 4CBA into TCA cycle intermediates via the meta-cleavage of (4-chloro )catechol to produce pyruvate and acetyl-CoA. In the current study, the meta-pathway gene cluster was cloned from the chromosomal DNA of S-47 strain to obtain pCS1, which included the degradation activities for 4CBA and catechol. The genetic organization of the operon was then examined by cloning the meta-pathway genes into a pBluescript SKII(+) vector. As such, the meta-pathway operon from Pseudomonas sp. S-47 was found to contain 13 genes in the order of xylXYZLTEGFlQKIH. The two regulatory genes, xylS and xylR, that control the expression of the meta-pathway operon, were located adjacently downstream of the meta-pathway operon. The xyl genes from strain S-47 exhibited a high nucleoside sequence homology to those from Pseudomonas putida mt-2, except for the xylJQK genes, which were more homologous to the corresponding three genes from P. stutzeri AN10. One open reading frame was found between the xylH and xylS genes, which may playa role of a transposase. Accordingly, the current results suggest that the xyl gene cluster in Pseudomonas sp. S-47 responsible for the complete degradation of benzoate was recombined with the corresponding genes from P. putida mt-2 and P. stutzeri AN10.

재조합 대장균에서의 Polyhydroxybutyrate (PHB)의 분자량 조절 (Molecular weight Control of Polyhydroxybutyrate (PHB) in Recombinant Escherichia coli)

  • 심상준;안토니신스키
    • KSBB Journal
    • /
    • 제13권1호
    • /
    • pp.96-100
    • /
    • 1998
  • 두 개의 프로모터 (trc와 Pp)를 Alcaligenes eutrophus에서 유래된 PHA 오페론에 삽입하여 재조합 대장균에서 분자량이 큰 polyhydroxybutyrate (PHB)를 얻고자 하였다. 두 개의 프로모터는 hydroxybutyric CoA와 PHA 중합반응의 유전자 발현을 각각 독립적으로 제어하기 위해 설계된 것이다 새로운 합성오페론을 포함한 플라즈미드는 E. coli DH5 $\alpha$ 에 transformation 되어 PHB 생산에 이용되었다. 본 실험의 가설로서 PHA 합성오페론의 IPTG에 의한 유도가 없을 경우 낮은 pHA synthase의 활성이 고분자 중합반응의 개시제 농도를 줄여주어 결과적으로 높은 연결수의 고분자를 생성할 것이라는 모델을 세웠다. 실제로 IPTG의 공급이 없는 발효실험을 통해 평균분자량이 $2.5{\times}10^7$ 인 거대 고분자를 얻을 수 있었다. PHA 생합성에 관여는 효소의 활성 분석으로 3-hydroxybutyric CoA의 중합을 촉매하는 효소인 PHA synthase의 활성을 가지고 In vivo에서 분자량이 제어됨을 확인하였다.

  • PDF

Dynamic Behavior of Regulatory Elements in the Hierarchical Regulatory Network of Various Carbon Sources-Grown Escherichia coli

  • Lee, Sung-Gun;Hwang, Kyu-Suk;Kim, Cheol-Min
    • Journal of Microbiology and Biotechnology
    • /
    • 제15권3호
    • /
    • pp.551-559
    • /
    • 2005
  • The recent rapid increase in genomic data related to many microorganisms and the development of computational tools to accurately analyze large amounts of data have enabled us to design several kinds of simulation approaches for the complex behaviors of cells. Among these approaches, dFBA (dynamic flux balance analysis), which utilizes FBA, differential equations, and regulatory events, has correctly predicted cellular behaviors under given environmental conditions. However, until now, dFBA has centered on substrate concentration, cell growth, and gene on/off, but a detailed hierarchical structure of a regulatory network has not been taken into account. The use of Boolean rules for regulatory events in dFBA has limited the representation of interactions between specific regulatory proteins and genes and the whole transcriptional regulation mechanism with environmental change. In this paper, we adopted the operon as the basic structure, constructed a hierarchical structure for a regulatory network with defined fundamental symbols, and introduced a weight between symbols in order to solve the above problems. Finally, the total control mechanism of regulatory elements (operons, genes, effectors, etc.) with time was simulated through the linkage of dFBA with regulatory network modeling. The lac operon, trp operon, and tna operon in the central metabolic network of E. coli were chosen as the basic models for control patterns. The suggested modeling method in this study can be adopted as a basic framework to describe other transcriptional regulations, and provide biologists and engineers with useful information on transcriptional regulation mechanisms under extracellular environmental change.