DOI QR코드

DOI QR Code

Regulation of stf Operon Expression and Its Virulence

살모넬라가 발현하는 stf 오페론의 조절과 병원성 인자로서의 기능

  • Kim Sam-Woong (Division of Biological Sciences, Pusan National University) ;
  • Kim Young-Hee (Division of Biological Sciences, Pusan National University) ;
  • Kang Ho-Young (Division of Biological Sciences, Pusan National University)
  • 김삼웅 (부산대학교 생명과학부 미생물학과) ;
  • 김영희 (부산대학교 생명과학부 미생물학과) ;
  • 강호영 (부산대학교 생명과학부 미생물학과)
  • Published : 2005.08.01

Abstract

The stf (Salmonella typhimurium fimbriae) operon consisting of stfA(CDEFG assumes to encode putative fimbriae. The complete stf operon is existed in S. typhimurium and S. choleraesuis, whereas it is absent in S. typhi. Analyses of the amino acid residues between major subunit StfA of the Stf fimbriae and those of known other fimbriaes suggested that Stf belongs to class I type fimbriae. Through comparison of StfD chaperone with the other fimbrial chaperones, and of C-terminus in subunits of Stf fimbriae, it belongs to FGS (with a short Fl-G1 loop) subfamily. In order to investigate the expression of stf operon, we have constructed a Salmonella strain containing a chromosomal stfA::lacZYA transcriptional fusion, resulting in S. typhimurium $_X8532$. The strain $_X8532$ lacked the expression of \beta-galactosidase$ under normal culture conditions. However, with longer incubation time of the S. typhimurium $_X8532$, we have isolated 21 individual strains exhibiting $Lac^+$ phenotype. $Lac^+$ phenotype was appeared as approximately 0.03 frequency per generation. All isolates expressed lacZ constitutively in the various environmental conditions. Various global regulatory proteins including RpoS, OmpR, and CpxR were not involved in the regulation of the stf operon. A S. typhimurium $_X8661$ mutant lacking stfAC function attenuated 6.7 folds more than that of wild type $_X3761$ in the mouse virulence test, suggesting in the somehow involved in the Salmonella pathogenesis.

stf 오페론은 stfA CDEFG로 구성되며, S. typhimurium과 S. choleraesuis에서는 완전하게 존재한다. 그러나 S. typhi에서는 이 오페론이 결여되어 있고 S. paratyphi A에서는 stfC의 유전자가 돌연변이 되어 있다. 이 섬모는 class 1형태의 섬모로 분류되며, StfD chaperone을 다른 섬모를 구성하는 chaperone들과 비교할 때 각 subunit들의 C-말단 잔기의 분석은 StfD chaperone이 FGS subfamily와 유사한 특성을 보였다. stf 오페론이 lacZYA 유전자와 fusion된 S. typhimurium 돌연변이 균주를 사용하여 MacConkey 고체배지에서 장시간 배양한 후 $Lac^+$ 표현형을 보이는 21 isolate들을 분리하였다. $Lac^+$ 균주들은 34 세대 당 $0.28\~1.75$의 빈도로 발생하였다. 21 isolate들은 구성적으로 stf operon을 발현했지만, 범용의 조절자인 RpoS, OmpR, CpxR등에 의해 조절되지 않았다. Mouse독성 실험에서 S. typhimurium $_X8661$은 야생형인 $_X3761$에 비교하여 6.7배의 약독화를 보였다.

Keywords

References

  1. Baumler, A. J., R. M. Tsolis, P. J. Valentine, T. A. Ficht, and F. Heffron. 1997. Synergistic effect of mutations in invA and IpfC on the ability of Salmonella typhimurium to cause murine typhoid. Infect. Immun. 65, 2254-2259
  2. Bertani, G. 1951. Studies on lysogenesis. I. The mode of phage liberation by lysogenic Escherichia coli. J. Bacteriol. 62, 293-300
  3. Collinson, S. K., P. C. Doig, J. L. Doran, S. Clouthier, T. J. Trust, and W. W. Kay. 1993. Thin, aggregative fimbriae mediate binding of Salmonella enteritidis to fibronectin. J. Bacteriol. 175, 12-18
  4. Duguid, J. P., E. S. Anderson, and I. Campbell. 1966. Fimbriae and adhesive properties in Salmonellae. J. Pathol. Bacteriol. 92, 107-138 https://doi.org/10.1002/path.1700920113
  5. Duguid, J. P., I. W. Smith, G. Dempster, and P. N. Edmunds. 1955. Non-flagellar filamentous appendages (fimbriae) and haemagglutinating activity in Bacterium coli. J. Pathol. Bacteriol. 70, 335-348 https://doi.org/10.1002/path.1700700210
  6. Gay, P., D. Le Coq, M. Steinmetz, T. Berkelman, and C. I. Kado. 1985. Positive selection procedure for entrapment of insertion sequence elements in gram-negative bacteria. J. Bacteriol. 164, 918-921
  7. Grund, S., and A. Seiler. 1993. [Electron microscopic studies of fimbriae and lectin phagocytosis of Salmonella typhimurium variety copenhagen (STMVC)]. Zentralbl. Veterinarmed B. 40, 105-112
  8. Grund,S., R. Helmuth, R. Stephan, and R. Meyer. 1988. [Fimbrial formation, antibiogram, plasmid content, lysotype and biotype of Salmonella]. Zentralbl. Veterinarmed B. 35, 138-151 https://doi.org/10.1111/j.1439-0442.1988.tb00016.x
  9. Grund, S., and A. Weber. 1988. A new type of fimbriae on Salmonella typhimurium. Zentralbl. Veterinarmed B. 35, 779-782
  10. Hanahan, D. 1983. Studies on transformation of Escherichia coli with plasmids. J. Mol. BioI. 166, 557-580 https://doi.org/10.1016/S0022-2836(83)80284-8
  11. Hohmann, A. W., G. Schmidt, and D. Rowley. 1978. Intestinal colonization and virulence of Salmonella in mice. Infect. Immun. 22, 763-770
  12. Humphries, A D., M. Raffatellu, S. Winter, E. H. Weening, R. A Kingsley, R. Droleskey, S. Zhang, J. Figueiredo, S. Khare, J. Nunes, L. G. Adams, R. M. Tsolis, and A J. Baumler. 2003. The use of flow cytometry to detect expression of subunits encoded by 11 Salmonella enterica serotype Typhimurium fimbrial operons. Mol. Microbiol. 48, 1357-1376 https://doi.org/10.1046/j.1365-2958.2003.03507.x
  13. Hung, D. L., S. D. Knight, R. M. Woods, J. S. Pinkner, and S. J. Hultgren. 1996. Molecular basis of two subfamilies of immunoglobulin-like chaperones. Embo J. 15, 3792-3805
  14. Hung, D. L., T. L. Raivio, C. H. Jones, T. J. Silhavy, and S. J. Hultgren. 2001. Cpx signaling pathway monitors biogenesis and affects assembly and expression of P pili. Embo J. 20, 1508-1518 https://doi.org/10.1093/emboj/20.7.1508
  15. Lockman, H. A, and R. Curtiss, 3rd. 1992a. Isolation and characterization of conditional adherent and non-type 1 fimbriated Salmonella typhimurium mutants. Mol. Microbiol. 6, 933-945 https://doi.org/10.1111/j.1365-2958.1992.tb01543.x
  16. Lockman, H. A, and R. Curtiss, 3rd. 1992b. Virulence of non-type 1-fimbriated and nonfimbriated nonflagellated Salmonella typhimurium mutants in murine typhoid fever. Infect. Immun. 60, 491-496
  17. Morrow, B. J., J. E. Graham, and R. Curtiss, 3rd. 1999. Genomic subtractive hybridization and selective capture of transcribed sequences identify a novel Salmonella typhimurium fimbrial operon and putative transcriptional regulator that are absent from the Salmonella typhi genome. Infect. Immun. 67, 5106-5116
  18. Neidhardt, F. C., R. Curtiss, 3rd, J. L. Ingraham et al. 1996. Escherichia coli and Salmonella; Cellular and Molecular biology, 2nd ed. ASM Press, 146-157
  19. Nevesinjac, A Z., and T. L. Raivio. 2005. The Cpx envelope stress response affects expression of the type IV bundleforming pili of enteropathogenic Escherichia coli. J. Bacteriol. 187, 672-686 https://doi.org/10.1128/JB.187.2.672-686.2005
  20. Nicholson, B., and D. Low. 2000. DNA methylation dependent regulation of pef expression in Salmonella typhimurium. Mol. Microbiol. 35, 728-742 https://doi.org/10.1046/j.1365-2958.2000.01743.x
  21. Nicholson, T. L., and A J. Baumler. 2001. Salmonella enterica serotype typhimurium elicits cross-immunity against a Salmonella enterica serotype enteritidis strain expressing LP fimbriae from the lac promoter. Infect. immun. 69, 204-212 https://doi.org/10.1128/IAI.69.1.204-212.2001
  22. Otto, K, and T. J. SiIhavy. 2002. Surface sensing and adhesion of Escherichia coli controlled by the Cpx-signaling pathway. Proc Natl Acad Sci USA 99, 2287-2292
  23. Reed, L. J., and H. Muench. 1938. A simple method of estimating fifty per cent endpoints. The American Journal of Hygiene. 27, 493-497
  24. Roland, K., R. Curtiss, 3rd, and D. Sizemore. 1999. Construction and evaluation of a delta cya delta crp Salmonella typhimurium strain expressing avian pathogenic Escherichia coli O78 LPS as a vaccine to prevent airsacculitis in chickens. Avian Dis. 43, 429-441 https://doi.org/10.2307/1592640
  25. Romling, U., Z. Bian, M. Hammar, W. D. Sierralta, and S. Normark. 1998. Curli fibers are highly conserved between Salmonella typhimurium and Escherichia coli with respect to operon structure and regulation. J. Bacteriol. 180, 722-731
  26. Sambrook, J., E. F. Fritsch, and T. Maniatis 1989. Molecular Cloning, A laboratory manual. 2nd edition, Cold Spring Harbor Laboratory. Cold Spring Harbor, NY https://doi.org/10.1016/0003-2697(90)90595-Z
  27. Simons, R. W., F. Houman, and N. Kleckner. 1987. Improved single and multicopy lac-based cloning vectors for protein and operon fusions. Gene. 53, 85-96 https://doi.org/10.1016/0378-1119(87)90095-3
  28. Stolpe, H., S. Grund, and W. Schroder. 1994. Purification and partial characterization of type 3 fimbriae from Salmonella typhimurium var. copenhagen. Zentralbl Bakteriol. 281, 8-15 https://doi.org/10.1016/S0934-8840(11)80631-6
  29. Thanassi, D. G., E. T. Saulino, and S. J. Hultgren. 1998. The chaperone/usher pathway: a major terminal branch of the general secretory pathway. Curr Opin Microbiol. 1, 223-231 https://doi.org/10.1016/S1369-5274(98)80015-5
  30. Townsend, S. M., N. E. Kramer, R. Edward, S. Baker, N. Hamlin, M. Simmonds, S. Kim, S. Maloy, J. Parkhill, G. Dougan, and A. J. Baumler. 2001. Salmonella enterica Serovar Typhi Possesses a Unique Repertoire of Fimbrial Gene Sequences. Infect. Immun. 69, 2894-2901 https://doi.org/10.1128/IAI.69.5.2894-2901.2001