• Title/Summary/Keyword: operational modal analysis (OMA)

Search Result 26, Processing Time 0.022 seconds

Dynamic behavior investigation of scale building renovated by repair mortar

  • Basaran, Hakan
    • Computers and Concrete
    • /
    • v.16 no.4
    • /
    • pp.531-544
    • /
    • 2015
  • The objective of this study was to examine the effect of repair mortar on the dynamic properties such as natural frequencies, mode shape and damping ratios of two story single span scale reinforced concrete building. To this end, two story single span scale reinforced concrete building having dimensions of 150 cm (width), 150 cm (length) and 135 cm (height) was constructed. Workmanship defects such as separation of material, faulty vibration application and bad gradation of the structure were properly evaluated. Dynamic properties of damaged structure were experimentally determined using Operational Modal Analysis (OMA). Detected defects in the structure were fixed by plastering with repair mortar. Dynamic properties of repaired structure were reevaluated by using the OMA method. Finite element software called Abaqus was used to numerically determine dynamic properties of the structure. Structure modeled as solid was subjected to Linear Perturbation Frequency Method. The changes in dynamic properties of structure after the repair process were comparatively studied by evaluating experimental and numerical results.

Uncertainty in Operational Modal Analysis of Hydraulic Turbine Components

  • Gagnon, Martin;Tahan, S.-Antoine;Coutu, Andre
    • International Journal of Fluid Machinery and Systems
    • /
    • v.2 no.4
    • /
    • pp.278-285
    • /
    • 2009
  • Operational modal analysis (OMA) allows modal parameters, such as natural frequencies and damping, to be estimated solely from data collected during operation. However, a main shortcoming of these methods resides in the evaluation of the accuracy of the results. This paper will explore the uncertainty and possible variations in the estimates of modal parameters for different operating conditions. Two algorithms based on the Least Square Complex Exponential (LSCE) method will be used to estimate the modal parameters. The uncertainties will be calculated using a Monte-Carlo approach with the hypothesis of constant modal parameters at a given operating condition. In collaboration with Andritz-Hydro Ltd, data collected on two different stay vanes from an Andritz-Hydro Ltd Francis turbine will be used. This paper will present an overview of the procedure and the results obtained.

Infill wall effects on the dynamic characteristics of RC frame systems via operational modal analysis

  • Komur, Mehmet A.;Kara, Mehmet E.;Deneme, Ibrahim O.
    • Structural Engineering and Mechanics
    • /
    • v.74 no.1
    • /
    • pp.121-128
    • /
    • 2020
  • This paper presents an experimental study on the dynamic characteristics of infilled reinforced concrete (RC) frames. A 1/3-scaled, one-bay, three-storey RC frame was produced and tested by using operational modal analysis (OMA). The experiments were performed on five specimens: one reference frame with no infill walls and four frames with infill walls. The RC frame systems included infill walls made of hollow clay brick, which were constructed in four different patterns. The dynamic characteristics of the patterns, including the frequency, mode shapes and damping ratios in the in-plane direction, were obtained by 6 accelerometers. Twenty-minute records under ambient vibration were collected for each model, and the dynamic characteristics were determined using the ambient vibration testing and modal identification software (ARTeMIS). The experimental studies showed that the infill walls significantly affected the frequency value, rigidity and damping ratio of the RC frame system.

Research about Pipe Analysis Model Updating by Using OMA Method (OMA기법을 활용한 가동배관의 해석모델 교정에 관한 연구)

  • Yi, Yonggeun;Jeong, Minki;Kang, Deokshin;Kong, busung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.485-485
    • /
    • 2014
  • 배관 가동시 여러 지점에서 가속도를 측정, 이를 이용하여 배관의 어느 부위에 stress가 많이 걸리는지 해석적으로 확인하기 위한 연구이다. 먼저, 배관 설계시 사용된 CEASER II의 정보를 기반으로 해석 모델을 만들었다. 해석 모델을 바탕으로 측정 포인트를 산정한 후, 가동 중인 배관의 가속도를 측정하였다. 측정된 가속도 data를 OMA(Operational Modal Analysis) method를 이용하여 Mode shape 및 Frequency를 추출한 후 이를 바탕으로 배관의 FE 모델을 Updating 하였다. Updating 된 배관 FE 모델에 측정된 가속도 data가 나오도록 Force를 가해 배관에 걸리는 stress를 계산하였다.

  • PDF

The determination of effect of TiO2 on dynamic behavior of scaled concrete structure by OMA

  • Tuhta, Sertac
    • Advances in nano research
    • /
    • v.11 no.6
    • /
    • pp.641-648
    • /
    • 2021
  • In this article, the dynamic parameters (frequencies, mode shapes, damping ratios) of the scaled concrete structure and the dynamic parameters (frequencies, mode shapes, damping ratios) of the entire outer surface of titanium dioxide, 80 micron in thickness are compared using operational modal analysis method. Ambient excitation was provided from micro tremor ambient vibration data on ground level. Enhanced Frequency Domain Decomposition (EFDD) was used for the output only modal identification. From this study, a good correlation between mode shapes was found. Titanium dioxide applied to the entire outer surface of the scaled concrete structure has an average of 11.78% difference in frequency values and 10.15% in damping ratios, proving that nanomaterials can be used to increase rigidity in structures, in other words, for reinforcement. Another important result determined in the study was the observation of the adherence of titanium dioxide and similar nanomaterials mentioned in the introduction to concrete structure surfaces was at the highest level.

The determination of effect of TiO2 on dynamic behavior of scaled WPC warehouse by OMA

  • Tuhta, Sertac
    • Advances in nano research
    • /
    • v.12 no.1
    • /
    • pp.65-72
    • /
    • 2022
  • The dynamic properties (frequencies, mode shapes, damping ratios) of the scaled WPC warehouse are compared using the operational modal analysis approach to the dynamic parameters (frequencies, mode shapes, damping ratios) of the full outer surface of titanium dioxide, 70 micron in thickness. Micro tremor ambient vibration data on ground level was used to provide ambient excitation. For the output-only modal identification, Enhanced Frequency Domain Decomposition (EFDD) was used. This study discovered a strong correlation between mode shapes. Titanium dioxide applied to the entire outer surface of the scaled WPC warehouse results in an average 14.05 percent difference in frequency values and 7.61 percent difference in damping ratios, demonstrating that nanomaterials can be used to increase rigidity in structures, or for reinforcement. Another significant finding in the study was the highest level of adherence of titanium dioxide and similar nanomaterials mentioned in the introduction to WPC structure surfaces.

Theoretical and experimental dynamic characteristics of a RC building model for construction stages

  • Turker, Temel;Bayraktar, Alemdar
    • Computers and Concrete
    • /
    • v.17 no.4
    • /
    • pp.455-475
    • /
    • 2016
  • Dynamic characteristics, named as natural frequencies, damping ratios and mode shapes, affect the dynamic behavior of buildings and they vary depending on the construction stages. It is aimed to present the effects of construction stages on the dynamic characteristics of reinforced concrete (RC) buildings considering theoretical and experimental investigations. For this purpose, a three-storey RC building model with a 1/2 scale was constructed in the laboratory of Civil Engineering Department at Karadeniz Technical University. The modal testing measurements were performed by using Operational Modal Analysis (OMA) method for the bare frame, brick walled and coated cases of the building model. Randomly generated loads by impact hammer were used to vibrate the building model; the responses were measured by uni-axial seismic accelerometers as acceleration. The building's modal parameters at these construction stages were extracted from the processed signals using the Enhanced Frequency Domain Decomposition (EFDD) technique. Also, the finite element models of each case were developed and modal analyses were performed. It was observed from the experimental and theoretical investigations that the natural frequencies of the building model varied depending on the construction stages considerably.

Evaluation of Short and Long-Term Modal Parameters of a Cable-Stayed Bridge Based on Operational Modal Analysis (운용모드해석에 기반한 사장교의 장단기 동특성 평가)

  • Park, Jong-Chil
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.4
    • /
    • pp.20-29
    • /
    • 2022
  • The operational modal analysis (OMA) technique, which extracts the modal parameters of a structural system using ambient vibrations, has been actively developed as a field of structural health monitoring of cable-supported bridges. In this paper, the short and long-term modal parameters of a cable-stayed bridge were evaluated using the acceleration data obtained from the two ambient vibration tests (AVTs) and three years of continuous measurements. A total of 27 vertical modes and 1 lateral mode in the range 0.1 ~ 2.5 Hz were extracted from the high-resolution AVTs which were conducted in the 6th and 19th years after its completion. Existing OMA methods such as Peak-Picking (PP), Eigensystem Realization Algorithm with Data Correlation (ERADC), Frequency Domain Decomposition (FDD) and Time Domain Decomposition (TDD) were applied for modal parameters extraction, and it was confirmed that there was no significant difference between the applied methods. From the correlation analysis between long-term natural frequencies and environmental factors, it was confirmed that temperature change is the dominant factor influencing natural frequency fluctuations. It was revealed that the decreased natural frequencies of the bridge were not due to changes in structural performance and integrity, but to the environmental effects caused by the temperature difference between the two AVTs. In addition, when the TDD technique is applied, the accuracy of extracted mode shapes is improved by adding a proposed algorithm that normalizes the sequence so that the autocorrelations at zero lag equal 1.

Experimental evaluation of crack effects on the dynamic characteristics of a prototype arch dam using ambient vibration tests

  • Sevim, Baris;Altunisik, Ahmet Can;Bayraktar, Alemdar
    • Computers and Concrete
    • /
    • v.10 no.3
    • /
    • pp.277-294
    • /
    • 2012
  • The aim of the study is to determine the modal parameters of a prototype damaged arch dam by operational modal analysis (OMA) method for some damage scenarios. For this purpose, a prototype arch dam-reservoir-foundation model is constructed under laboratory conditions. Ambient vibration tests on the arch dam model are performed to identify the modal parameters such as natural frequency, mode shape and damping ratio. The tests are conducted for four test-case scenarios: an undamaged dam with empty reservoir, two different damaged dams with empty reservoirs, and a damaged dam with full reservoir. Loading simulating random impact effects is applied on the dam to crack. Cracks and fractures occurred at the middle of the upper part of the dams and distributed through the abutments. Sensitivity accelerometers are placed on the dams' crests to collect signals for measurements. Operational modal analysis software processes the signals collected from the ambient vibration tests, and enhanced frequency domain decomposition and stochastic subspace identification techniques are used to estimate modal parameters of the dams. The modal parameters are obtained to establish a basis for comparison of the results of two techniques for each damage case. Results show that approximately 35-40% difference exists between the natural frequencies obtained from Case 1 and Case 4. The natural frequencies of the dam considerably decrease with increasing cracks. However, observation shows that the filled reservoir slightly affected modal parameters of the dam after severe cracking. The mode shapes obtained are symmetrical and anti-symmetrical. Apparently, mode shapes in Case 1 represent the probable responses of arch dams more accurately. Also, damping ratio show an increase when cracking increases.

Finite element model calibration of a steel railway bridge via ambient vibration test

  • Arisoy, Bengi;Erol, Osman
    • Steel and Composite Structures
    • /
    • v.27 no.3
    • /
    • pp.327-335
    • /
    • 2018
  • This paper presents structural assessment of a steel railway bridge for current condition using modal parameter to upgrade finite element modeling in order to gather accurate result. An adequate monitoring, such as acceleration, displacement, strain monitoring, is important tool to understand behavior and to assess structural performance of the structure under surround vibration by means of the dynamic analysis. Evaluation of conditions of an existing steel railway bridge consist of 4 decks, three of them are 14 m, one of them is 9.7 m, was performed with a numerical analysis and a series of dynamic tests. Numerical analysis was performed implementing finite element model of the bridge using SAP2000 software. Dynamic tests were performed by collecting acceleration data caused by surrounding vibrations and dynamic analysis is performed by Operational Modal Analysis (OMA) using collected acceleration data. The acceleration response of the steel bridge is assumed to be governing response quantity for structural assessment and provide valuable information about the current statute of the structure. Modal identification determined based on response of the structure play significant role for upgrading finite element model of the structure and helping structural evaluation. Numerical and experimental dynamic properties are compared and finite element model of the bridge is updated by changing of material properties to reduce the differences between the results. In this paper, an existing steel railway bridge with four spans is evaluated by finite element model improved using operational modal analysis. Structural analysis performed for the bridge both for original and calibrated models, and results are compared. It is demonstrated that differences in natural frequencies are reduced between 0.2% to 5% by calibrating finite element modeling and stiffness properties.