• Title/Summary/Keyword: operational analysis

Search Result 3,111, Processing Time 0.034 seconds

Capability, Service Orientation, and Performance in the Investment Management Industry

  • Lee, Kang Duck;Jung, Chang Ho;Kim, Yong Jin
    • Asia pacific journal of information systems
    • /
    • v.25 no.3
    • /
    • pp.597-625
    • /
    • 2015
  • Prior research has emphasized the significant effect of service orientation on organizational performance. However, little research on service orientation has been conducted in the financial field, including the investment management service industry in which high quality service for clients is required. In this paper, we propose a research model that centers on the concept of service orientation as a type of dynamic capability affecting firm performance. The research variables include job competency, risk management capability, operational capability, service orientation, and service performance. We assume that service orientation partially mediates the effects of risk management capability and operational capability on service performance. To test the model, we collected data from 391 fund managers in 86 teams (37 investment management companies) and analyzed it with partial least squares (PLS) method. Each of the 391 fund managers was asked to answer team level measures, which is effective for team level analysis. We find that job competency positively affects both risk management capability and operational capability, which in turn affect service orientation. Risk management capability and operational capability are assumed to directly affect service performance. However, risk management capability does not influence perceived service performance, whereas operational capability does affect it. This result indicates that risk management capability does not directly affect service performance. However, via service orientation, considering that risk management inconveniences customers and is geared to enhance service orientation, service performance is positively affected. Operational capability does not influence service orientation, whereas it affects perceived service performance. This result reveals that operational capability directly affects firm performance. As expected, service orientation significantly affects the service performance perception of fund managers. This study contributes to the literature by introducing service orientation to the financial industry and measures and tests team-level service performance. Our findings also provide insights to practitioners because to enhance team performance, managers must focus on service orientation in addition to operational capability.

Analysis of the Cause of Hindrance for Ride Quality with OPAX and OTPA (변수모델을 이용한 전달경로분석법(OPAX)과 전달률 함수를 사용한 전달경로분석법(OTPA)을 사용한 승차감 저해요인분석)

  • Kim, Jongsik;Sin, Kwangsoo;Choi, Sangil;Im, Sebin;Kim, Jindong;Lee, Sangkwon
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.24 no.12
    • /
    • pp.935-942
    • /
    • 2014
  • The ride quality investigation is on-going topic in the car industry since its global standard has not evaluated and it is difficult to point out one part that hinders the ride quality. Since the traditional transfer path analysis that is widely used in car industry to investigate the ride quality requires a lot of test time to process the full data so that there are problems to conduct in industry. Based on these disadvantages, new approaches have developed such as OPAX(operational path analysis with eXogeneous inputs) and OTPA(operational transfer path analysis) for last decades. The OTPA only requires the operational data for evaluate the contribution of vibration sources and the OPAX has advantage of using parametric model to estimate the operating load and needs a minimum set of extra tests with excitation. In this paper, for evaluating the hindrance of ride quality two methods are used and the result is compared with another result of a car having higher ride quality.

Acoustic emission source location and noise cancellation for crack detection in rail head

  • Kuanga, K.S.C.;Li, D.;Koh, C.G.
    • Smart Structures and Systems
    • /
    • v.18 no.5
    • /
    • pp.1063-1085
    • /
    • 2016
  • Taking advantage of the high sensitivity and long-distance detection capability of acoustic emission (AE) technique, this paper focuses on the crack detection in rail head, which is one of the most vulnerable parts of rail track. The AE source location and noise cancellation were studied on the basis of practical rail profile, material and operational noise. In order to simulate the actual AE events of rail head cracks, field tests were carried out to acquire the AE waves induced by pencil lead break (PLB) and operational noise of the railway system. Wavelet transform (WT) was first utilized to investigate the time-frequency characteristics and dispersion phenomena of AE waves. Here, the optimal mother wavelet was selected by minimizing the Shannon entropy of wavelet coefficients. Regarding the obvious dispersion of AE waves propagating along the rail head and the high operational noise, the wavelet transform-based modal analysis location (WTMAL) method was then proposed to locate the AE sources (i.e. simulated cracks) respectively for the PLB-induced AE signals with and without operational noise. For those AE signals inundated with operational noise, the Hilbert transform (HT)-based noise cancellation method was employed to improve the signal-to-noise ratio (SNR). Finally, the experimental results demonstrated that the proposed crack detection strategy could locate PLB-simulated AE sources effectively in the rail head even at high operational noise level, highlighting its potential for field application.

Vibration modelling and structural modification of combine harvester thresher using operational modal analysis and finite element method

  • Zare, Hamed Ghafarzadeh;Maleki, Ali;Rahaghi, Mohsen Irani;Lashgari, Majid
    • Structural Monitoring and Maintenance
    • /
    • v.6 no.1
    • /
    • pp.33-46
    • /
    • 2019
  • In present study, Operational Modal Analysis (OMA) was employed to carry out the dynamic and vibration analysis of the threshing unit of the combine harvester thresher as a mechanical component. The main study is to find the causes of vibration and to decrease it to enhance the lifetime and efficiency of the threshing unit. By utilizing OMA, structural modal parameters such as mode shapes, natural frequencies, and damping ratio was calculated. The combine harvester was excited by engine to vibrate different parts and accelerometer sensor collected acceleration signals at different speeds, and OMA was utilized by nonparametric and frequency analysis methods to obtain modal parameters while vibrating in real working conditions. Afterwards, finite element model was designed from the thresher and updated using the data obtained from the modal analysis. Using the conducted analyses, it was specified that proximity of the thresher pass frequency to one of the natural frequencies (16.64 Hz) was the most important effect of vibration in the thresher. Modification process of the structure was carried out by increasing mass required for changing the natural frequency location of the first mode to 12.4 Hz in order to reduce resonance and vibration of the thresher.

Simulation Based Study to Verify the Required Operational Capability of the Para-Observation Munition (관측포탄 작전운용성능 검증을 위한 시뮬레이션 연구)

  • Ha, Set Byul;Kwon, Ojeong;Lee, Youngki;Cho, Namsuk
    • Journal of the Korea Society for Simulation
    • /
    • v.30 no.1
    • /
    • pp.87-101
    • /
    • 2021
  • Required Operational Capability(ROC), which means the performance of a weapon system, is determined when estimating the requirements of a new weapon system. It is very important to define the ROC as it has a decisive influence from acquisition of a weapon system to tactical operation. In this study, we propose a simulation methodology to verify the ROC of the Para-Observation Munition(POM), a newly developed weapon system. To this end, we propose a discrete-event simulation model that takes main performance of the weapon system constituting the ROC and environmental factors that affect performance of the weapon system as input values, and outputs operational effect as a result value. It describes various simulation logic required to implement a simulation model, and explains how to verify ROC using various simulation results such as sensitivity analysis. POM is a weapon system that does not have a similar one and that is difficult to directly utilize the military analysis model. This study can be used as a methodology to analyze the ROC and predict operational effects of weapon systems such as POM.

An Analysis of the Operational Productivity and Cost for the Utilization of Forest-biomass(II) - the Analysis of Operational Cost - (산림바이오매스 이용을 위한 산림작업 공정 및 비용 분석(II) - 작업비용 분석 -)

  • Mun, Ho-Seong;Cho, Koo-Hyun;Park, Sang-Jun
    • Journal of Korean Society of Forest Science
    • /
    • v.104 no.2
    • /
    • pp.230-238
    • /
    • 2015
  • This study was analyzed the operational cost of logging and chipping operations in order to develop the efficient logging operation system for the utilization of forest-biomass. Analysis of the operational cost of logging operation systems, the operation system D which include chain saw, tower-yarder, mini-forwarder and truck was calculated the lowest cost to be $68,498Won/m^3$. In the utilization of forest-biomass, the operation system E which include chipping by mini-chipper at the site, forwarding of chips by mini-forwarder, transportation of chips by truck was estimated to be 90,770 Won/Ton. Thus, These results are determined as an effective operating system for logging operation and the utilization of forest-biomass.

An application plan of NSWC-98/LE1 when predicting the reliability of mechanical components of design and development phase (체계 개발 단계별 기계 부품에 대한 신뢰도 예측 시 NSWC-98-LE1 적용 방안)

  • Kwon, Ki Sang;Park, Eun Sim;Cho, Cha Hyun;Lee, Dong Woo;Lee, Su Jung
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.4 no.1
    • /
    • pp.35-43
    • /
    • 2008
  • Generally, in analysis of reliability of Design and Development Phase, reliability of electrical components is analyzed based on standards such as MIL-HDBK-217F, Bellcore Issue 4,5,6 by analyzing stress of architectural side (Power, Voltage, Current and quality level of components) of weapon system and stress of operational side (operational environment, operational temperature, Operational Profile). But the reliability of mechanical components is analyzed based on the data book of failure history of mechanical parts called NPRD-95(Nonelectronic Parts Reliability Data-95) without any analysis of above stress. However, even if it's the same mechanical parts, it might have different failure rate(fatigue, wear, corrosion) during operation depending on how weary(stress : pressure, vibration, temperature during operation) the parts are. Therefore, analyzing reliability using just data book can cause big difference in reliability instead of analyzing based upon stressfulness that parts might have, operational concept, and other various factors. Thus, This paper will guide the way of predicting reliability by organizing ways of predicting reliability for system organization and adopt ing NSWC-98/LE1(Naval Surface Warfare Center-98/LE1) for mechanical components.

  • PDF

Analysis of Operational Requirements for Mother Ship with a Mounted Unmanned Surface Vehicle(USV) Using the Development Process of the Operational Concept (운용개념 개발 프로세스를 활용한 무인수상정(USV) 탑재 모함의 운용 요구사항 분석)

  • Hur, Jang Wan;Hong, Soon Kook;Lim, Kyung Han;Ryu, Jae Kwan
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.16 no.1
    • /
    • pp.25-35
    • /
    • 2020
  • The South Korean Navy is making efforts to acquire vessels that the new technology of the 4th industry is applied, and as a part of these efforts, it has a plan to mount and operate an Unmanned Surface Vehicle(USV) on a vessel that will be introduced later. However, the recent studies have focused on only development of common platforms and mission equipment for the USV, and have not sufficiently analyzed studies and operatinoal requirements on mother ship that will operate the mounted USV. Hence, this study analyzed and presented requirements of mother ship with the mounted USV in order to operate effectively it when the future medium and large vessels to be acquired by the South Korean Navy intent to operate the USV.

Upper Bound Analysis of Plane Strain Hot Strip Rolling Process (상계해석법을 이용한 평면변형 열간 판압연공정해석)

  • Moon, Young-Hoon;Chun, Myeong-Sik;Yi, Joon-Jeong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.8
    • /
    • pp.2468-2479
    • /
    • 1996
  • An upper bound solution is obtained to perform the process analysis of hot strip rolling process. The material flows within the roll bite at various geometries and frictional conditions are obtained from finite element analysis and the typical flow pattern which is necessary to determine the kinematically admissible velocity field is assumed. From the kinematically admissible velocity field, the upper bound energy is calculated and the rolling load, angle of neutral point and forward slip ratio at various operational conditions are obtained from upper bound energy. The process analysis of above mentioned parameters at various operational conditions have provided valuable information which is hard to obtain during rolling operation and the predicted ranges of quantitive values from these analyses lie whthin the bound of actual operational data.

Improvement of Radar Rainfall Intensity and Real-time Estimation of Areal Rainfall (레이더에 의한 개선된 강우강도와 면적 강우량의 실시간 추정)

  • Jung, Sung-Hwa;Kim, Kyung-Eak;Kim, Gwang-Seob
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2006.05a
    • /
    • pp.643-646
    • /
    • 2006
  • An operational calibration is applied to improve radar rainfall intensity using rainfall obtained from rain gauge. The method is applied under the assumption of the temporal continuity of rainfall, the rainfall intensity from rain gauge is linearly related to that from radar. The method is applied to the cases of typhoon and rain band using the reflectivity of CAPPI at 1.5km obtained from Jindo radar. The CAPPI is obtained by bilinear interpolation. For the two cases, the rainfall intensities obtained by operational calibration are very consistent with the ones by the rain gauges. The present study shows that the correlation between the rainfall intensity by operational calibration and rain gauges is better than the one between the rainfall intensity by M-P relationship and rain gauges. The correlation coefficients between the total rainfall intensity obtained by operational calibration and rain gauges in typhoon and rain band cases are 0.99 and 0.97, respectively. Areal rainfalls are estimated using the field of calibration factor interpolated by Barnes objective analysis. The method applied here shows an improvement in the areal rainfall estimation. For the cases of typhoon and rain band, the correlation between the areal rainfall by operational calibration and rain gauges is better than the one between the area rainfall by M-P relationship and rain gauges. The correlation coefficients between the areal rainfall obtained by operational calibration and rain gauges in typhoon and rain band cases are 0.97 and 0.84, respectively. The present study suggests that the operational calibration is very useful for the real-time estimation of rainfall intensity and areal rainfall.

  • PDF