• Title/Summary/Keyword: operating parameters

Search Result 2,171, Processing Time 0.036 seconds

Uncertainty in Operational Modal Analysis of Hydraulic Turbine Components

  • Gagnon, Martin;Tahan, S.-Antoine;Coutu, Andre
    • International Journal of Fluid Machinery and Systems
    • /
    • v.2 no.4
    • /
    • pp.278-285
    • /
    • 2009
  • Operational modal analysis (OMA) allows modal parameters, such as natural frequencies and damping, to be estimated solely from data collected during operation. However, a main shortcoming of these methods resides in the evaluation of the accuracy of the results. This paper will explore the uncertainty and possible variations in the estimates of modal parameters for different operating conditions. Two algorithms based on the Least Square Complex Exponential (LSCE) method will be used to estimate the modal parameters. The uncertainties will be calculated using a Monte-Carlo approach with the hypothesis of constant modal parameters at a given operating condition. In collaboration with Andritz-Hydro Ltd, data collected on two different stay vanes from an Andritz-Hydro Ltd Francis turbine will be used. This paper will present an overview of the procedure and the results obtained.

The Performance Analysis of Polymer Electrolyte Membrane Fuel Cells for Mobile Devices using CFD (CFD를 이용한 모바일기기용 고분자전해질 연료전지 성능해석)

  • Kim B.H.;Choi J.P.;Kang D.C.;Jeon B.H.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.553-554
    • /
    • 2006
  • This paper presents the effects of different operating parameters on the performance of a proton exchange membrane (PEM) fuel cell by a three-dimensional computational fluid dynamics (CFD) model. The effects of different operating parameters on the performance of PEM fuel cell studied using pure hydrogen on the anode side and air on the cathode side. The various parameters are temperatures, pressures, humidification of the gas steams and various combinations of these parameters. In addition, geometrical and material parameters such as the gas diffusion layer (GDL) thickness and porosity as well as the ratio between the channel width and the land area were investigated.

  • PDF

STUDY ON THE OPERATING CONDITION AND STABILITY OF CONTROL SYSTEM IN THE SPACE OF ADJUSTING PARAMETERS (조정파라미터 공간에서의 제어계 동작점과 안정성에 관한 연구)

  • 최순만
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.24 no.4
    • /
    • pp.470-477
    • /
    • 2000
  • The states of control loops in existing actual systems are changed according to time varying conditions of controllest process and other system components. Adjusting control parameters properly at site which is performed generally by Ziegler & Nichols mthod is important for safe and efficient operation, but the method may require much time to adjust and not easy to inexperienced engineers. This study is aimed to propose more handy method to adjust control parameters by plotting operating conditions on the space of adjusting parameters. One loop of model control system without perturbation condition has been adopted and its stability limit was plotted on the coordinates of Gain and Integral time which was acquired after analyzing Nyquist diagrams and time domain responses. The result showed that the sets of adjusting parameters according to critical stability and proper stability could be acquired reasonably through both responses and the curves on parameter space revealed available patterns for the purpose of easy maintenance of control characteristics.

  • PDF

Simulation of One-way Carsharing Systems : Operating Parameters and Relocation Policy Analysis (시뮬레이션을 활용한 편도 카쉐어링 시스템의 최적 운영 조건 및 차량 재배치 알고리즘에 대한 연구)

  • Park, SeJoon;Yu, Wooyeon;Park, Yunsun
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.42 no.3
    • /
    • pp.61-69
    • /
    • 2019
  • The concept of carsharing involves sharing a small number of reserved cars to be used individually by a larger number of people as required. This study examines the operating parameters of one-way carsharing systems in order to determine the appropriate operating conditions that minimizes the lost sales rate. Five operating parameters are tested in this study: the number of stations, the average number of vehicles per station, the rate of one-way trip, the average number of staffs per station, and the relocation policy. The performance of round-trip carsharing systems is also compared to that of one-way carsharing systems. A simulation model is developed and simulations are performed to determine the appropriate combination of operating parameter and levels. The simulation results show that the average number of vehicles per station is the most critical parameter. Other key findings obtained from this research are as follows. First, applying the appropriate relocation policy to one-way carsharing systems can allow more customers to rent vehicles than the traditional round-trip carsharing systems. Second, the appropriate relocation policy should be selected based on the average number of vehicles per station in order to minimize the lost sales rate. Third, the number of stations does not affect the lost sales rate. This study findings will provide tools to understand impact of the carsharing system parameters on the efficiency of the carsharing operations.

Effects of Operating Parameters on Cooling Performance of a Transcritical $CO_2$ Mobile Air-Conditioning System (운전조건 변화가 $CO_2$ 자동차 에어컨 시스템의 냉방성능에 미치는 영향에 대한 실험적 연구)

  • Lee, Jun-Kyoung
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.4
    • /
    • pp.67-75
    • /
    • 2007
  • This paper deals with the research for the effects of the operating parameters that could be used for a transcritical $CO_2$ mobile air-conditioning system on the cooling performance. The experimental conditions of the performance tests for a system and components such as a gas cooler and an evaporator were suggested to compare the performance of each with the standardized test conditions. And this research presents experimental results for the performance characteristics of a $CO_2$ mobile air conditioning system with various operating conditions such as different gas cooler inlet pressures and frontal air velocities/temperatures passing through an evaporator and a gas cooler. Experimental results show that the cooling capacity was more than 5kW and coefficient of performance (COP) was more than 2.1, also. Therefore, we checked that the mobile air-conditioning system using $CO_2$ has good performance compared to that using HFC-134a.

Adaptive Protection Algorithm for Overcurrent Relay in Distribution System with DG

  • Sung, Byung Chul;Lee, Soo Hyoung;Park, Jung-Wook;Meliopoulos, A.P.S.
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.5
    • /
    • pp.1002-1011
    • /
    • 2013
  • This paper proposes the new adaptive protection algorithm for inverse-time overcurrent relays (OCRs) to ensure their proper operating time and protective coordination. The application of the proposed algorithm requires digital protection relays with microcontroller and memory. The operating parameters of digital OCRs are adjusted based on the available data whenever system conditions (system with distributed generation (DG)) vary. Moreover, it can reduce the calculation time required to determine the operating parameters for achieving its purpose. To verify its effectiveness, several case studies are performed in time-domain simulation. The results show that the proposed adaptive protection algorithm can keep the proper operating time and provide the protective coordination time interval with fast response.

A Study on the Impact of Inlet Temperatures of Heating Water and Feed Water on Operating Conditions of 2 Effect Desalination System (2중효용 담수장치의 가열열원과 공급수 온도에 의한 작동 상태 변화에 관한 연구)

  • Choe, Seong-Uk;Park, Jong-Jin;Jeong, Hyeong-Ho
    • Proceedings of the SAREK Conference
    • /
    • 2006.06a
    • /
    • pp.663-668
    • /
    • 2006
  • In the present paper, a single stage fresh water generator was modified and extended to 2 effect desalination system. The inlet temperatures of hot water and feed water were selected as experiment parameters to get operating conditions and fresh water generating rates. The impacts of these parameters on operating conditions and fresh water generating rates were described in detail.

  • PDF

Study on Spray Atomization Characteristics Depending on the Operating Parameters of Urea Injector (요소수 인젝터의 작동 변수에 따른 분무미립화 성능에 관한 연구)

  • Kim, Donghwan;Park, Junkyu;Park, Sungwook
    • Journal of ILASS-Korea
    • /
    • v.24 no.1
    • /
    • pp.1-7
    • /
    • 2019
  • This study was carried out to analyze the spray characteristics as a function of the operating parameters of urea injector used in Urea-SCR system of passenger diesel vehicle. Spray visualization and PDPA experiment were performed to analyze the macroscopic spray development and atomization performance of urea-water-solution. For the urea injector, the deformation of the spray head does not appear to be significant because it operates at a low pressure conditions, and the liquid core and primary droplet are observed throughout the operating conditions. No increase in atomization is seen when the operating pressure is increased, and the spray develops linearly due to poor atomization characteristics. The macroscopic spray behavior of the low-pressure urea injector is predictable through the modification of the Hiroyasu equation.

A Method for Reliability Analysis of Process Facilities under Changing Operating Conditions (운전조건이 변화하는 공정설비의 신뢰도 분석기법)

  • Choi Soo Hyoung
    • Journal of the Korean Institute of Gas
    • /
    • v.7 no.4 s.21
    • /
    • pp.20-23
    • /
    • 2003
  • The analysis of reliabilities of process facilities often uses models based on the Weibull distribution. The parameters in these models are functions of operating conditions, and determined by experiments. Using these values, we calculate the reliability, mean time to failure, and standard deviation. The conventional method assumes that the operating condition is constant, and thus treats the model parameters as constants. In this paper, a reliability function is proposed which is applicable when the scale parameter is a function of time, and an analysis method based on this is also presented. A case study on a cooling fan resulted in a big difference from the conventional method to which the average operating conditions were applied. The proposed method is also applicable to other process facilities, and expected to effectively take into account the effects of changes in the operating conditions on the reliabilities of the facilities.

  • PDF

A PID learning controller for DC motors (DC 전동기를 위한 PID 학습제어기)

  • Baek, Seung-Min;Kuc, Tae-Yong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.3 no.6
    • /
    • pp.555-562
    • /
    • 1997
  • With only the classical PID controller applied to control of a DC motor, good (target) performance characteristic of the controller can be obtained if all the model parameters of DC motor and operating conditions such as external load torque, disturbance, etc. are known exactly. However, in case when some of system parameters or operating conditions are uncertain or unknown, the fixed PID controller does not guarantee good performance, which is assumed with precisely known system parameters and operating conditions. In view of this and the robustness enhancement of DC motor control system, we propose a PID learning controller which consists of a set of learning rules for PID gain tuning and learning of an auxiliary input. The proposed PID learning controller is shown to drive the state of uncertain DC motor system with unknown system parameters and external load torque to the desired one world wide asymptotically. Computer simulation and experimental results are given to demonstrate the effectiveness of the proposed PID learning controller, thereby showing its superiority to the conventional fixed PID controller.

  • PDF