• 제목/요약/키워드: open voltage($V_{sc}$)

검색결과 73건 처리시간 0.029초

A nuclear battery based on silicon p-i-n structures with electroplating 63Ni layer

  • Krasnov, Andrey;Legotin, Sergey;Kuzmina, Ksenia;Ershova, Nadezhda;Rogozev, Boris
    • Nuclear Engineering and Technology
    • /
    • 제51권8호
    • /
    • pp.1978-1982
    • /
    • 2019
  • The paper presents the electrical performance measurements of a prototype nuclear battery and two types of betavoltaic cells. The electrical performance was assessed by measuring current-voltage properties (I-V) and determining the short-circuit current and the open-circuit voltage. With 63Ni as an irradiation source, the open-circuit voltage and the short-circuit current were determined as 1 V and 64 nA, respectively. The prototype consisted of 10 betavoltaic cells that were prepared using radioactive 63Ni. Electroplating of the radioactive 63Ni on an ohmic contact (Ti-Ni) was carried out at a current density of 20 mA/㎠. Two types of betavoltaic cells were studied: with an external 63Ni source and a 63Ni-covered source. Under irradiation of the 63Ni source with an activity of 10 mCi, the open-circuit voltage Voc of the fabricated cells reached 151 mV and 109 mV; the short-circuit current density Jsc was measured to be 72.9 nA/cm2 and 64.6 nA/㎠, respectively. The betavoltaic cells had the fill factor of 55% and 50%, respectively.

MBE법으로 제작한 ZnSe/GaAs 이종접합 태양전지에 관한 연구 (A Study on ZnSe/GaAs Heterojunction Solar Cells Grown by MBE)

  • 이홍찬;이상태;오진석;김윤식;장지호
    • 한국마린엔지니어링학회:학술대회논문집
    • /
    • 한국마린엔지니어링학회 2006년도 전기학술대회논문집
    • /
    • pp.289-290
    • /
    • 2006
  • We report a study of Zn(S)Se/GaAs heterojunction solar cells grown by molecular beam epitaxy (MBE). Zn(S)Se/GaAs heterostructures prepared under different conditions were characterized in-situ by reflection high-energy electron diffraction (RHEED). Structural and electrical properties were investigated with double crystal X-ray diffraction and current-voltage characteristics, respectively. The fabricated $n-ZnS_{0.07}Se_{0.93}/p-GaAs$ solar cell (SC #2) exhibited open circuit voltage($V_{oc}$) of 0.37 V, short circuit current($I_{sc}$) of $1.7{\times}10^{-2}$ mA, fill factor of 0.62 and conversion efficiency of 7.8 % under 38.5 $mW/cm^2$ illumination.

  • PDF

태양전지 셀의 고온에 의한 전기적 특성 변화 연구 (A study of the electrical characteristics changes of PV cell at high temperature)

  • 정태희;신준오;김태범;강기환;안형근;한득영
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2009년도 추계학술대회 논문집
    • /
    • pp.387-389
    • /
    • 2009
  • PV module is manufactured by several steps such as cell sort, tabbing & string, lay-up, lamination processes. In oder to manufacture PV module, solar cell must be placed in high temperature. Soldering Process in high temperature is important because it directly influences electric output performance changes of solar cell in solar cell module. We consider applying momentary high temperature, while soldering solar cell, and expect change electric characteristics of PV module. In this paper, we measure electric output characteristics of solar cells after those are applied with high temperature changes for two seconds. From these results, we confirm with application of high temperature, $I_{sc}$ increase and $V_{oc}$ slightly decreases.

  • PDF

사막형 결정질 실리콘 태양전지의 에미터 구조에 따른 온도 별 특성 변화 분석 (Analysis on Temperature Dependence of Crystalline Silicon Solar Cells with Different Emitter Types for Desert Environment)

  • 남윤정;김수민;강윤묵;이해석;김동환
    • Current Photovoltaic Research
    • /
    • 제2권3호
    • /
    • pp.135-139
    • /
    • 2014
  • Different power output of solar cells can be observed at high-temperature regions such as desert areas. In this study, performance dependence on operating temperature of crystalline silicon solar cells with different emitter types was analyzed. Based on the light current-voltage (LIV) measurement, temperature coefficients of short-circuit current density ($J_{SC}$), open-circuit voltage ($V_{OC}$), fill factor (FF) and power conversion efficiency were measured and compared for two groups of crystalline silicon solar cells with different emitter types. One group had homogeneously doped (conventional) emitter and another selectively doped (selective) emitter. Varying the operating temperature from 25 to 40, 60, and $80^{\circ}C$, LIV characteristics of the cells were measured and the properties of saturation current densities ($J_0$) were extracted from dark current-voltage (DIV) curve. From the DIV data, effect of temperature on the performance of the solar cells with different electrical structures for the emitter was analyzed. Increasing the temperature, both emitter structures showed a slight increase in $J_{SC}$ and a rapid degradation of $V_{OC}$. FF and power conversion efficiency also decreased with the increasing temperature. The degrees of $J_{SC}$ increase and $V_{OC}$ degradation for two groups were compared and explained. Also, FF change was explained by series and shunt resistances from the LIV data. It was concluded that the degradation of solar cells shows different values at different temperatures depending on the emitter type of solar cells.

ZnO:Al 투명전도막을 이용한 높은 개방전압을 갖는 비정질 실리콘 박막 태양전지 제조 (Amorphous silicon thin-film solar cells with high open circuit voltage by using textured ZnO:Al front TCO)

  • 이정철;;이준신;송진수;윤경훈
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2006년도 춘계학술대회
    • /
    • pp.158-161
    • /
    • 2006
  • Superstrate pin amorphous silicon thin-film (a-Si:H) solar cells are prepared on $SnO_2:F$ and ZnO:Al transparent conducting oxides (TCO) In order to see the effect of TCO/P-layers on a-Si:H solar cell operation. The solar cells prepared on textured ZnO:Al have higher open circuit voltage $V_{oc}$ than cells prepared on $SnO_2:F$. Presence of thin microcrystalline p-type silicon layer $({\mu}c-Si:H)$ between ZnO:Al and p a-SiC:H plays a major role by causing improvement in fill factor as well as $V_{oc}$, of a-Si:H solar cells prepared on ZnO:Al TCO. Without any treatment of pi interface, we could obtain high $V_{oc}$, of 994mv while keeping fill factor (72.7%) and short circuit current density $J_{sc}$ at the same level as for the cells on $SnO_2:F$ TCO. This high $V_{oc}$ value can be attributed to modification in the current transport in this region due to creation of a potential barrier.

  • PDF

Homogeneous 에미터와 Selective 에미터 결정질 실리콘 태양전지의 온도에 따른 전류-전압 특성 변화 측정 및 분석 (Measurement and Analysis of Temperature Dependence for Current-Voltage Characteristics of Homogeneous Emitter and Selective Emitter Crystalline Silicon Solar Cells)

  • 남윤정;박효민;이지은;김수민;김영도;박성은;강윤묵;이해석;김동환
    • 한국재료학회지
    • /
    • 제24권7호
    • /
    • pp.375-380
    • /
    • 2014
  • Solar cells exhibit different power outputs in different climates. In this study, the temperature dependence of open-circuit voltage(V-oc), short-circuit current(I-sc), fill factor(FF) and the efficiency of screen-printed single-crystal silicon solar cells were studied. One group was fabricated with homogeneously-doped emitters and another group was fabricated with selectively-doped emitters. While varying the temperature (25, 40, 60 and $80^{\circ}C$), the current-voltage characteristics of the cells were measured and the leakage currents extracted from the current-voltage curve. As the temperature increased, both the homogeneously-doped and selectively-doped emitters showed a slight increase in I-sc and a rapid degradation of V-oc. The FF and efficiency also decreased as temperature increased in both groups. The temperature coefficient for each factor was calculated. From the current-voltage curve, we found that the main cause of V-oc degradation was an increase in the intrinsic carrier concentration. The temperature coefficients of the two groups were compared, leading to the idea that structural effects could also affect the temperature dependence of current-voltage characteristics.

InAs/GaAs 양자점 태양전지에서 전하트랩의 영향 (Influence of Carrier Trap in InAs/GaAs Quantum-Dot Solar Cells)

  • 한임식;김종수;박동우;김진수;노삼규
    • 한국진공학회지
    • /
    • 제22권1호
    • /
    • pp.37-44
    • /
    • 2013
  • 본 연구에서는 양자점(quantum dot, QD)에서의 전하트랩이 태양전지의 특성에 미치는 영향을 조사하기 위하여, GaAs 모체 태양전지(MSC)의 활성층에 InAs/GaAs QD을 삽입한 $p^+-QD-n/n^+$ 태양전지(QSC)를 제작하여 그 특성을 비교 조사하였다. Stranski-Krastanow (SK)와 준단층(quasi-monolayer, QML)의 2종류 QD를 도입하였으며, 표준 태양광(AM1.5)에서 얻은 전류-전압 곡선으로부터 태양전지의 특성인자(개방전압($V_{OC}$), 단락전류($I_{SC}$), 충만도(FF), 변환효율(CE))를 결정하였다. SK-QSC의 FF값은 80.0%로 MSC의 값(80.3%)과 비슷한 반면, $V_{OC}$$J_{SC}$는 각각 0.03 V와 $2.6mA/cm^2$만큼 감소하였다. $V_{OC}$$J_{SC}$ 감소 결과로 CE는 2.6% 저하되었는데, QD에 의한 전하트랩이 주요 원인으로 지적되었다. 전하트랩을 완화시키기 위한 구조로서 QML-QD 기반 태양전지를 본 연구에서 처음 시도하였으나, 예측과는 달리 부정적 결과를 보였다.

ZnO:Al 투명전도막을 이용한 높은 개방전압을 갖는 비정질 실리콘 박막 태양전지 제조 (Amorphous silicon thin-film solar cells with high open circuit voltage by using textured ZnO:Al front TCO)

  • 이정철;안세진;윤재호;송진수;윤경훈
    • 신재생에너지
    • /
    • 제2권3호
    • /
    • pp.31-36
    • /
    • 2006
  • Superstrate pin amorphous silicon thin-film(a-Si:H) solar cells are prepared on $SnO_2:F$ and ZnO:Al transparent conducting oxides(TCO) in order to see the effect of TCO/p-layers on a-Si:H solar cell operation. The solar cells prepared on textured ZnO:Al have higher open circuit voltage VOC than cells prepared on $SnO_2:F$. Presence of thin microcrystalline p-type silicon layer(${\mu}c-Si:H$) between ZnO:Al and p a-SiC:H plays a major role by causing improvement in fill factor as well as $V_{OC}$ of a-Si:H solar cells prepared on ZnO:Al TCO. Without any treatment of pi interface, we could obtain high $V_{OC}$ of 994mV while keeping fill factor(72.7%) and short circuit current density $J_{SC}$ at the same level as for the cells on $SnO_2:F$ TCO. This high $V_{OC}$ value can be attributed to modification in the current transport in this region due to creation of a potential barrier.

  • PDF

Se Incorporation in VTD-SnS by RTA and Its Influence on Performance of Thin Film Solar Cells

  • Yadav, Rahul Kumar;Kim, Yong Tae;Pawar, Pravin S.;Heo, Jaeyeong
    • Current Photovoltaic Research
    • /
    • 제10권2호
    • /
    • pp.33-38
    • /
    • 2022
  • Planner configuration thin film solar cells (TFSCs) with SnS/CdS heterojunction performed a lower short-circuit current (JSC). In this study, we have demonstrated a path to overcome deficiency in JSC by the incorporation of Se in the SnS absorber. We carried out the incorporation of Se in VTD grown SnS absorber by rapid thermal annealing (RTA). The diffusion of Se is mostly governed by RTA temperature (TRTA), also it is observed that film structure changes from cube-like to plate-like structure with TRTA. The maximum JSC of 23.1 mA cm-2 was observed for 400℃ with an open-circuit voltage (VOC) of 0.140 V for the same temperature. The highest performance of 2.21% with JSC of 18.6 mA cm-2, VOC of 0.290 V, and fill factor (FF) of 40.9% is observed for a TRTA of 300℃. In the end, we compare the device performance of Se- incorporated SnS absorber with pristine SnS absorber material, increment in JSC is approximately 80% while a loss in VOC of about 20% has been observed.

스퍼터링에 의한 CdTe 박막 제조 조건이 CdTe/CdS 태양전지의 특성에 미치는 영향 (Effect of Sputtering Conditions for CdTe Thin Films on CdTe/CdS Solar Cell Characteristics)

  • 정해원;이천;신재혁;신성호;박광자
    • E2M - 전기 전자와 첨단 소재
    • /
    • 제10권9호
    • /
    • pp.930-937
    • /
    • 1997
  • Polycrystalline CdTe thin films have been studied for photovoltaic application because of their high absorption coefficient and optimal band energy(1.45 eV) for solar energy conversion. In this study CdTe thin films were deposited on CdS(chemical bath deposition)/ITO(indium tin oxide) substrate by rf-magnetron sputtering under various conditions. Structural optical and electrical properties are investigated with XRD UV-Visible spectrophotometer SEM and solar simulator respectively. The fabricated CdTe/CdS solar cell exhibited open circuit voltage( $V_{oc}$ ) of 610 mV short circuit current density( $J_{sc}$ ) of 17.2 mA/c $m^2$and conversion efficiency of about 5% at optimal sputtering conditions.

  • PDF