• 제목/요약/키워드: open radiation field

검색결과 86건 처리시간 0.018초

Design of Low Field RF Coil for Open MRI System by Electric Dipole Radiation

  • 김경락;양형진;오창현
    • Proceedings of the KSMRM Conference
    • /
    • 대한자기공명의과학회 2001년도 제6차 학술대회 초록집
    • /
    • pp.174-174
    • /
    • 2001
  • Purpose: Dimensions of body RF coil composed of 4 rectangular loops for low field open MRI hav been optimized. The design result shows the field inhomogeneity of B1 field below 1.5 dB in the 25 cm DSV can be achieved. Method: Our low field RF coil is composed of 4 rectangular strip loops that assumed to b located at both the bottom and top sides of permanent magnet. All the loops have identica dimensions and current amplitude. First, the inductance of a loop is calculated. Second, the current distribution on the coil strip is calculated by using finite difference time doma method (FDTD). It takes as much as 4 days in FDTD simulation for low frequency RF field That's why the electrical dipole radiation method is used for simulation. With the curren distribution obtained using the FDTD simulation, for various dimensional parameters th magnetic field has been calculated by electric dipole radiation method, where the curren elements are regarded as electric dipole radiation sources. The field pattern from electri dipole radiation is almost same as that from FDTD simulation. Also, it is same as that fro the result using the Viot-Savart equation, for far tone radiation term becomes zero and th Bl field amplitude of near one radiation is the same as the B field due to static current The field homogeneity is calculated in the 25 cm BSV.

  • PDF

Transmission Dose Estimation Algorithm for in vivo Dosimetry

  • Yun, Hyong-Geun;Huh, Soon-Nyung;Lee, Hyoung-Koo;Woo, Hong-Gyun;Shin, Kyo-Chul;Ha, Sung-Whan
    • Journal of Radiation Protection and Research
    • /
    • 제28권1호
    • /
    • pp.59-63
    • /
    • 2003
  • Purpose : Measurement of transmission dose is useful for in vivo dosimetry of QA purpose. The objective of this study is to develope an algorithm for estimation of tumor dose using measured transmission dose for open radiation field. Materials and Methods : Transmission dose was measured with various field size (FS), phantom thickness (Tp), and phantom chamber distance (PCD) with a acrylic phantom for 6 MV and 10 MV X-ray Source to chamber distance (SCD) was set to 150 cm. Measurement was conducted with a 0.6 cc Farmer type ion chamber. Using measured data and regression analysis, an algorithm was developed for estimation of expected reading of transmission dose. Accuracy of the algorithm was tested with flat solid phantom with various settings. Results : The algorithm consisted of quadratic function of log(A/P) (where A/P is area-perimeter ratio) and tertiary function of PCD. The algorithm could estimate dose with very high accuracy for open square field, with errors within ${\pm}0.5%$. For elongated radiation field, the errors were limited to ${\pm}1.0%$. Conclusion : The developed algorithm can accurately estimate the transmission dose in open radiation fields with various treatment settings.

Study on the Reduction of Electron Contamination with A Cobalt-60 Gamma Ray (코발트-60 감마선의 전자 오염에 관한 연구)

  • Kim, Tae-Kyu;Chun, Ha-Chung;Lee, Myung-Za
    • Radiation Oncology Journal
    • /
    • 제7권2호
    • /
    • pp.293-297
    • /
    • 1989
  • Electron contamination due to the interaction between radiation beam and material was analyzed for the factors such as source-skin distance (SSD), field size, tray characteristics and position of filter, which can affect the surface dose in Cobalt teletherapy. Surface dose in open beam was more influenced by SSD with increasing field size. Relative surface charge (RSC) increased with the use of tray (solid, circular hole, slotted), compared with open beam, which is thought to be due to increased electron contamination of the tray. To reduce the surface dose, 0.4mm thick Lipowitz metal filter was used. Compared with open beam, RSC decreased by 8.8%, 11.3%, 13.3%, 16.6%, 19.3% and 21.7% for the field size of $5{\times}5$, $10{\times}10$, $15{\times}15$, $20{\times}20$, $25{\times}25$ and $30{\times}30cm^2$, respectively. On the contrary, use of Lipowitz metal filter increased RSC at 60cm or less SSD. Surface dose was effectively reduced with Lpowitz metal filter placed right below solid tray in Cobalt teletherapy.

  • PDF

Design of Body RF Coil with Multiple Strips for Open MRI System by Pseudo Electric Dipole Radiation

  • 김경락;류승학;류연철;양형진;오창현
    • Proceedings of the KSMRM Conference
    • /
    • 대한자기공명의과학회 2002년도 제7차 학술대회 초록집
    • /
    • pp.76-76
    • /
    • 2002
  • Purpose: The purpose of this study is to optimize the configuration of body RF coil composed of 4 planar subcoils for low field open MRI. Method: Our low field RE coil is composed of 4 subcoils assumed to be located at both the bottom and top sides of permanent magnet. Each subcoils has 3 main strips. The coil system has mirror inversion symmetry. First, the currents on the strips are obtained by inductance calculation and circuit analysis, Second, all the strips are divided into line strip elements across the strips, the self Inductances of line strip elements and the mutual inductances among the line strip elements are calculated, and current distributions of strip are obtained by circuit analysis, where each strip is considered as parallel combination of line strip elements. Finally all the line strip elements are segmented, magnetic field has been calculated by pseudo electric dipole radiation method, where the current elements are regarded as pseudo electric dipole radiation sources. We have performed above procedures for various configurations of RE coil. The field homogeneity is calculated in the 25 cm DSV.

  • PDF

Development of an open-source GUI computer program for modelling irradiation of multi-segmented phantoms using grid-based system for PHITS

  • Hiroshi Watabe;Kwan Ngok Yu;Nursel Safakatti;Mehrdad Shahmohammadi Beni
    • Nuclear Engineering and Technology
    • /
    • 제55권1호
    • /
    • pp.373-377
    • /
    • 2023
  • The Monte Carlo (MC) method has become an indispensable part of the nuclear radiation research field. Several widely used and well-known MC packages were developed for simulation of radiation transport and interaction with matter. All these MC packages require users to prepare an input script. The input script can become lengthy for complex models. The process of preparing these input scripts is time-consuming and error-prone. In the present work, we have developed an open-source GUI computer program for modelling radiation transport and interaction in multi-segmented slab phantoms using grid-based system for the widely used PHITS MC package. The developed tools would be useful for future users of PHITS MC package and particularly inexperienced users. The present program is distributed under GPL license and all users can freely download, modify and redistribute the program without any restrictions.

The Variation of PSF Induced Enlarged Wedged Fields (확장된 쐐기조사야에 의한 조직산란계수의 변화)

  • Lee, Jeong-Woo;Cho, Hwa-Seop;Park, Seong-Ryul
    • The Journal of Korean Society for Radiation Therapy
    • /
    • 제10권1호
    • /
    • pp.97-101
    • /
    • 1998
  • In recent days, although many kinds of beam modifiers are developing and using for clinical purposes in accordance with progressing medical engineering, physical wedges are preferred to use as a beam modifier by a lot of institutions until now because of cost, complexities of dosimetry and mechanical uncertainties. According to progressing technology, available field size of wedge is more enlarger than that of old model LINAC. Because field size dependence of wedged fields increases in new model LINAC, we was trying to know that how much different PSFs are in enlarged wedged fields compared with open fields. In small or middle size of fields($4{\times}4{\sim}15{\times}15cm$), there are only a few percents of PSF variation between open and wedged fields. But there are $2{\sim}8\%\;variations\;in\;relatively\;large\;fields(20{\times}20{\sim}30{\times}40cm)$.

  • PDF

The Output Factor of Small Field in Multileaf Collimator of 6 MV Photon Beams (다엽제한기 소조사면의 6 MV 광자선 출력선량계수)

  • Lee, Ho Joon;Choi, Tae-Jin;Oh, Young Kee;Jeun, Kyung Soo;Lee, Yong Hee;Kim, Jin Hee;Kim, Ok Bae;Oh, Se An;Kim, Sung Kyu;Ye, Ji Woon
    • Progress in Medical Physics
    • /
    • 제25권1호
    • /
    • pp.15-22
    • /
    • 2014
  • The IMRT is proper implement to get high dose deliver to tumor as its shape and selective approach in radiation therapy. Since the IMRT is performed as modulated the radiation fluence by the MLC created the open shapes and its irradiation time, the dose of segment of radiation field effects on the cumulated portal dose. The accurate output factor of small and step shape of segment is important to improve the determination of deliver tumor dose as it is directly proportional to dose. This experiment performed with the 6 MV photon beam of Clinac Ex(Varian) from $3{\times}3cm^2$ to $0.5{\times}0.5cm^2$ small field size for collimator jaw in MLC free and/or for MLC open field in fixed collimator jaw $10{\times}10cm^2$ using the CC01 ion chamber, SFD diode, diamond detector and X-Omat film dosimetry. As results of normalized to the reference field of $10{\times}10cm^2$ of MLC, the output factor of $3{\times}3cm^2$ showed $0.899{\pm}0.0106$, $0.855{\pm}0.0106$ for $2{\times}2cm^2$, $0.764{\pm}0.0082$ for $1{\times}1cm^2$ and $0.602{\pm}0.0399$ for $0.5{\times}0.5cm^2$. The output factor of MLC open field has shown a maximum 3.8% higher than that of the collimator jaw open field.

Evaluation of the Breast plan using the TLD and Mosfet for the skin dose (열형광선량계(TLD)와 MOSFET을 이용한 유방암 방사선치료계획에 대한 피부선량 평가)

  • Kim, seon myeong;Kim, young bum;Bak, sang yun;Lee, sang rok;Jeong, se young
    • The Journal of Korean Society for Radiation Therapy
    • /
    • 제27권2호
    • /
    • pp.107-113
    • /
    • 2015
  • Purpose : The measurement of skin dose is very important that treatment of breast cancer. On account of the cold or hot dose as compared with prescription dose, it is necessary to analyse the skin dose occurring during the various plan of the breast cancer treatment. At our hospital, we want to apply various analyses using a diversity of dosimeters to the breast cancer treatment. Subjectss and Methods : In the study, the anthropomorphic phantom is used to find out the dose difference of the skin(draining site), scar and others occurring from the tangential treatment plan of breast cancer. We took computed tomography scan of the anthropomorphic phantom and made plans for the treatment planing using open and wedge, Field-in-Field, Dose fluence. Using these, we made a comparative analysis of the dose date points by using the Eclipse. For the dose comparison, we place the anthropomorphic phantom in the treatment room and compared the measurement results by using the TLD and MOSFET on the dose data points. Results : On the central point of treatment planing basis, the upward and downward skin dose measured by the MOSFET was the highest when the fluence was used. The skin dose of inner and outer was distinguished from the figure(5.7% ~ 10.3%) when the measurements were fulfilled by using TLD and MOSFET. The other side of breast dose was the lowest in the open beam, on the other hand, is highest in the Dose fluence plan. In the different kinds of treatment, the dose deviation of inner and outer was the highest, and so this was the same with the TLD and MOSFET measurement case. The outer deviation was highest in the TLD, and the Inner'was highest in the MOSFET. Conclusion : Skin dose in relation to the treatment plan was the highest in the planing using the fluence technique in general and it was supposed that the high dose had been caused by the movement of the MLC. There's some differences among the all the treatment planning, but the sites such as IM node occurring the lack of dose, scar, drain site are needed pay close attention. Using the treatment planning of dose fluence is good to compensate the lack of dose, but It increases the dose of the selective range rather than the overall dose. Therefore, choosing the radiotherapy technique is desirable in the lights of the age and performance of the patient.

  • PDF

Evaluation of Contralateral Breast Surface Dose in FIF (Field In Field) Tangential Irradiation Technique for Patients Undergone Breast Conservative Surgery (보존적 유방절제 환자의 방사선치료 시 종속조사면 병합방법에 따른 반대편 유방의 표면선량평가)

  • Park, Byung-Moon;Bang, Dong-Wan;Bae, Yong-Ki;Lee, Jeong-Woo;Kim, You-Hyun
    • Journal of radiological science and technology
    • /
    • 제31권4호
    • /
    • pp.401-406
    • /
    • 2008
  • The aim of this study is to evaluate contra-lateral breast (CLB) surface dose in Field-in-Field (FIF) technique for breast conserving surgery patients. For evaluation of surface dose in FIF technique, we have compared with other techniques, which were open fields (Open), metal wedge (MW), and enhanced dynamic wedge (EDW) techniques under same geometrical condition and prescribed dose. The three dimensional treatment planning system was used for dose optimization. For the verification of dose calculation, measurements using MOSFET detectors with Anderson Rando phantom were performed. The measured points for four different techniques were at the depth of 0cm (epidermis) and 0.5cm bolus (dermis), and spacing toward 2cm, 4cm, 6cm, 8cm, 10cm apart from the edge of tangential medial beam. The dose calculations were done in 0.25cm grid resolution by modified Batho method for inhomogeneity correction. In the planning results, the surface doses were differentiated in the range of $19.6{\sim}36.9%$, $33.2{\sim}138.2%$ for MW, $1.0{\sim}7.9%$, $1.6{\sim}37.4%$ for EDW, and for FIF at the depth of epidermis and dermis as compared to Open respectively. In the measurements, the surface doses were differentiated in the range of $11.1{\sim}71%$, $22.9{\sim}161%$ for MW, $4.1{\sim}15.5%$, $8.2{\sim}37.9%$ for EDW, and 4.9% for FIF at the depth of epidermis and dermis as compared to Open respectively. The surface doses were considered as underestimating in the planning calculation as compared to the measurement with MOSFET detectors. Was concluded as the lowest one among the techniques, even if it was compared with Open method. Our conclusion could be stated that the FIF technique could make the optimum dose distribution in Breast target, while effectively reduce the probability of secondary carcinogenesis due to undesirable scattered radiation to contra-lateral breast.

  • PDF

Usefulness evaluation of Hybrid planning through dosimetric comparision of Three Dimensinal Conformal Radiation Radiotherapy and Hybrid planning for left breast cancer (유방암 환자의 방사선 치료시 Energy와 Wedge를 combine한 Hybrid plan의 유용성 평가)

  • Chae, Moon Ki;Park, Byung Soo;Ahn, Jong Ho;Song, Ki Won
    • The Journal of Korean Society for Radiation Therapy
    • /
    • 제26권1호
    • /
    • pp.91-98
    • /
    • 2014
  • Purpose : To compare the dosimetry for the left breast cancer treatment between three dimensional conformal radiation radiotherapy (3D-CRT) and Hybrid planning and to estimate usefulness of Hybrid planning Materials and Methods : Five patients with left breast cancer were included in the study. They were planned using several different radiotherapy techniques including: 1)open rectangular field, 2)tangential wedge-based field 3)field in field, 4)hybrid planning(energy, wedge combine). For each patient planning was using Light Speed RT-16 CT and PINNACLE planning system-ver.9.2. Hybrid plan was made using same system and using the same targets and optimization goals. We comparing the Homogeneity Index(HI), normal organs at the does-volume histogram(DVH) Results : In all plans, the Homogeneity Index(HI) of Hybrid planning was significantly better than other. Dose comparison of HI= 2D-RT:38.32, TW:38.32, FIF:29.22, HYBRID:30.57. 2D-RT, TW, FIF Hybrid$V_{75_-lung}$=112.33, 125.14, 121.3, 123.78. $V_{50_-lung}$=155.43, 159.62, 157.96, 159.06. $V_{25_-lung}$=199.86, 200.22, 198.65, 200.31. $V_{50_-heart}$=26.07, 27.1, 26.85, 27.17 $V_{30_-heart}$=33.71, 34.37, 34.15, 34.65 Conclusion : In summary, 3D-CRT, Hybrid planning techniques were found to have acceptableCTV coverage in our study. However the Hybrid planning increased radiation dose exposure to normal tissue. If you apply for treatment of inhomogeneity areas like lung, For best results will be achieved.