• Title/Summary/Keyword: open channel flow

Search Result 286, Processing Time 0.02 seconds

Effective Wall Roughness corresponding to Roughness Coefficient of Open Channel Flow (개수로 조도계수에 따른 유효 벽면거칠기)

  • Choi, Jun-Woo;Kwon, Kab-Keun;Kim, Hyung-Seok;Yoon, Sung-Bum
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.176-179
    • /
    • 2008
  • In a numerical simulation of open channel turbulent flows, the determination of wall roughness height for wall function was studied. The roughness constant, based on the law-of-the -wall for flow on rough walls, obtained by experimental works for pipe flows is employed in general wall functions. However, this constant of wall function is the function of Froude number in open channel flows. Thus, the wall roughness should be determined by taking into account the effect of Froude number. In addition, the wall roughness should be corresponding to Manning's roughness coefficient widely used for open channels. In this study, the relation between wall roughness height as an input condition and Manning's roughness coefficient was investigated, and an equation for effective wall roughness height considering the characteristics of numerical models was proposed as a function of Manning's roughness coefficient.

  • PDF

Separation of Proteins Mixture in Hollow Fiber Flow Field-Flow Fractionation

  • Shin, Se-Jong;Nam, Hyun-Hee;Min, Byoung-Ryul;Park, Jin-Won;An, Ik-Sung;Lee, Kang-Taek
    • Bulletin of the Korean Chemical Society
    • /
    • v.24 no.9
    • /
    • pp.1339-1344
    • /
    • 2003
  • Flow field-flow fractionation (FlFFF) is a technology to separate the molecules by size in an open channel. Molecules with different size have different diffusivities and are located vertically in different positions when passing through an open channel. In this study, hollow fiber membranes instead of conventional rectangular channels have been used as materials for the open channel and this change would decrease the cost of manufacturing. FlFFF is a useful technique to characterize the biopolymeric materials. Retention time, diffusion coefficients and Stokes radius of analysis can be calculated from the related simple equations. Hollow-fiber flow field-flow fractionation (HF-FlFFF) has been used for the characterization and separation of protein mixture in a phosphate buffer solution and has demonstrated the potential to be developed into a disposable FlFFF channel. The important indexes for the analytical separation are selectivity, resolution and plate height. The optimized separation condition for protein mixture of Ovalbumin, Alcohol dehydrogenase, Apoferritin and Thyroglobulin is ${\dot V}_{out}/{\dot V}_{rad}=0.65/0.85\;mL/min$.

Characteristics of the Momentum Equation in Open Channel Flow (개수로흐름 해석에서 운동량방정식의 특성)

  • Jeon, Min-Woo;Cho, Yong-Soo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2008.05a
    • /
    • pp.1111-1115
    • /
    • 2008
  • The relative magnitudes of the individual terms of the momentum equation are analyzed and compared by the analytical methods in open channel flow. The temporal variations of each term(local acceleration term, convective acceleration term, pressure force term, gravity force term, and friction force term) are analyzed for the influence factors to runoff expressed by the parameters of the momentum equation, stream slopes and roughness coefficients. The magnitudes of each term vary with the channel characteristics, especially when the roughness coefficients are dominant or for the mild stream slopes the pressure term can not be negligible. As a result of the characteristics of momentum equation in open channel flow, the acceleration terms are very small compared with the other terms. The magnitudes of local acceleration and convective acceleration offsets each other. The peak time of each term except the gravity term coincides with inflection point of the hydrograph rising limb each other.

  • PDF

Turbulence Characteristics in a Circular Open Channel by PIV Measurements

  • Kim, Sun-Gu;Sung, Jae-Yong;Lee, Myeong-Ho
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.35 no.7
    • /
    • pp.930-937
    • /
    • 2011
  • The characteristics of mean velocity and turbulence have been analyzed in the circular open channel flow using PIV measurement data for a wide range of water depth. The measured data are fitted to a velocity distribution function over the whole depth of the open channel. Reynolds shear stress and mean velocity in wall unit are compared with the analytic models for fully-developed turbulent boundary layer. Both the mean velocity and Reynolds shear stress have different distributions from the two-dimensional boundary layer flow when the water depth increases over 50% since the influence of the side wall penetrates more deeply into the free surface. The cross-stream Reynolds normal stress also has considerably different distribution in view of its peak value and decreasing rate in the outer region whether the water depth is higher than 50% or not.

Effect of Guide Nozzle Shape on the Performance Improvement of a Very Low Head Cross Flow Turbine

  • Chen, Zhenmu;Singh, Patrick Mark;Choi, Young-Do
    • The KSFM Journal of Fluid Machinery
    • /
    • v.17 no.5
    • /
    • pp.19-26
    • /
    • 2014
  • The cross flow turbine attracts more and more attention for its relatively wide operating range and simple structure. In this study, a novel type of micro cross flow turbine is developed for application to a step in an irrigational channel. The head of the turbine is only H=4.3m and the turbine inlet channel is open ducted type, which has barely been studied. The efficiency of the turbine with inlet open duct channel is relatively low. Therefore, a guide nozzle on the turbine inlet is attached to improve the performance of the turbine. The guide nozzle shapes are investigated to find the best shape for the turbine. The guide nozzle plays an important role on directing flow at the runner entry, and it also decreases the negative torque loss by reducing the pressure difference in Region 1. There is 12.5% of efficiency improvement by attaching a well shaped guide nozzle on the turbine inlet.

Flow Resistance of Vertical Rib Sidewall in Open Channel (개수로 측벽 세로돌출줄눈의 흐름저항)

  • Park, Sang Deog;Ji, Min Gyu;Nam, A Reum;Woo, Tae Young;Shin, Seung Sook
    • Journal of Korea Water Resources Association
    • /
    • v.46 no.9
    • /
    • pp.947-956
    • /
    • 2013
  • Most of flood protection walls built on the impingement in mountain rivers have been made of concrete. It may cause flood disasters because the smooth wall surface could increase flow velocity. In this study the hydraulic experiments was carried out to evaluate the effect of one side wall with rectangular vertical ribs on flow resistance in open channel. The ratio of the pitch between vertical ribs to its depth, ${\lambda}_{nv}$, was designed so that it include the so-called d type and k type roughness. The range of Froude number, $F_r$, based on hydraulic radius is 0.81~1.12. Flow resistance in the open channel with a rib sidewall depends on the interval length of each ribs and the flow discharge. Maximum flow resistance occurred when ${\lambda}_{nv}$ is 9. In the d type roughness which ${\lambda}_{nv}$ is less than 3, the flow resistance decreases with increase of flow discharge. In the k type roughness which ${\lambda}_{nv}$ is greater than 3, the flow resistance increases with increase of flow discharge. The increments of flow resistance are especially great when ${\lambda}_{nv}$ are 9 and 12. The resistance due to vertical rib is mostly by the shape resistance and the vertical rib on one sidewall of open channel affects on the flow resistance so that the equivalent roughness heights of vertical rib may occur in scale of flow depth. Therefore the vertical ribs may be used to reduce the flow velocity and to move the location of maximum flow velocity from the rib sidewall to the centerward in a cross section of channels.

Analysis of 1D and 2D Flows in Open-Channel with FDM and FVM (유한차분법과 유한체적법을 이용한 1차원과 2차원 개수로 흐름해석)

  • Kim, Man Sik;Lee, Jin Hee;Jeong, Chan;Park, Roh Hyuk
    • Journal of Wetlands Research
    • /
    • v.10 no.2
    • /
    • pp.67-79
    • /
    • 2008
  • The one-dimensional (1D) finite-difference method (FDM) with Abbott-Ionescu scheme and the two-dimensional (2D) finite-volume method (FVM) with an approximate Riemann solver (Osher scheme) for unsteady flow calculation in river are described. The two models have been applied to several problems including flow in a straight channel, flow in a slightly meandering channel and a flow in a meandering channel. The uniform rectangular channel was employed for the purpose of comparing results. A comparison is made between the results of computation on 1D and 2D flows including straight channel, slightly meandering channel and meandering channel application. The implementation of the finite-volume method allows complex boundary geometry represented. Agreement between FVM and FDM results regarding the discharge and stage is considered very satisfactory in straight channel application. It was concluded that a 1D analysis is sufficient if the channel is prismatic and remains straight. For curved (meandering) channels, a 2D or 3D model must be used in order to model the flow accurately.

  • PDF

The Remodelling of Hydraulic Structure in a Distribution Channel for Improving the Equality of the Flow Distribution (I): Design Using CFD Simulation (수리구조 개선을 통한 분배수로 균등분배 성능 향상에 관한 연구(I) : CFD를 이용한 설계 중심으로)

  • Park, No-Suk;Kim, Seong-Su;Park, Jong-Yoon;Yoon, Cheol-Hwan;Kim, Chung-Hwan
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.21 no.5
    • /
    • pp.571-579
    • /
    • 2007
  • This study was conducted to qualify the equality of the flow distribution from open channel between rapid mixing basin and flocculation basins in a domestic full-scale water treatment plant, and suggest a remedy for improving the equality. In order to evaluate the feasibility of the suggested remedy, computational fluid dynamics (CFD) technique are used, and for verifying the CFD simulation results wet tests were carried out for the pilot scale channel based on geometric similarity. From the results of CFD simulation and wet tests, it was investigated that the modification of hydraulic structure in the distribution channel, which is to install the longitudinal orifice baffle in flow direction, could improve the equality of the flow distribution. Also, in the case that Froude number is relatively small (Froude number <<0.03), the open ratio of orifices on the installed baffle hardly affects the equality of flow distribution.

Friction Factor of Rectangular Open Channel Flow (사각형 개수로 마찰계수)

  • 유동훈
    • Water for future
    • /
    • v.28 no.2
    • /
    • pp.155-168
    • /
    • 1995
  • The present paper discusses the traditional empirical equations of friction factor or cross-sectional mean velocity of open channel flow and suggests the new form of friction factor equation. Dimensional analysis is conducted for the possible forms of traditional empirical equations in order to satisfy the dimensional equality, and new forms of empirical equations are presented with introducing equivalent roughness height. Considering the distribution of friction factor against Reynolds number which has a similar characteristics to that of smooth turbulent flow in circular pipe, the friction factor equation of rectangular open channel flow is developed by modifying the friction factor equation of circular pipe flow for the region of smooth turbulent flow. The equations including the dimensionally-corrected empirical equations are tested against Bazin's laboratory experiments.

  • PDF

Examining Three-Dimensional Flow Characteristics in the Distribution Channel to the Flocculation Basin using CFD (전산유체역학을 이용한 응집지 분배수로의 흐름 해석에 관한 연구)

  • Park, No-Suk;Beak, Heung-Ki;Kim, Jeong-Hyun;Min, Jin-Hui;Shin, Hang-Sik
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.18 no.4
    • /
    • pp.500-507
    • /
    • 2004
  • This study was conducted to evaluate the equity of the flow distribution from rapid mixing basin to the flocculation basins. Also, several types of inlet structures of the open channel affecting the flow pattern and distribution trend were studied using Computational Fluid Dynamics (CFD) simulation. For investigating the factual phenomena in distribution channel, we selected a certain domestic water treatment plant with capacity of $361,000m^3/d$. From the measurements of flow discharge, it is investigated that this existing inlet geometry resulted in significant inequitable distribution. The both largest deviations in the basins and rows were over 10%. In order to reduce the these deviation, this study suggested installing a baffle against the influent, and showed the effectiveness which the largest deviation was less than 3%. Also, it was concluded that the existing design method of open channel could be improved by three-dimensional hydrodynamic analysis for optimizing the even flow.