• Title/Summary/Keyword: online structural identification

Search Result 46, Processing Time 0.029 seconds

Online Document Mining Approach to Predicting Crowdfunding Success (온라인 문서 마이닝 접근법을 활용한 크라우드펀딩의 성공여부 예측 방법)

  • Nam, Suhyeon;Jin, Yoonsun;Kwon, Ohbyung
    • Journal of Intelligence and Information Systems
    • /
    • v.24 no.3
    • /
    • pp.45-66
    • /
    • 2018
  • Crowdfunding has become more popular than angel funding for fundraising by venture companies. Identification of success factors may be useful for fundraisers and investors to make decisions related to crowdfunding projects and predict a priori whether they will be successful or not. Recent studies have suggested several numeric factors, such as project goals and the number of associated SNS, studying how these affect the success of crowdfunding campaigns. However, prediction of the success of crowdfunding campaigns via non-numeric and unstructured data is not yet possible, especially through analysis of structural characteristics of documents introducing projects in need of funding. Analysis of these documents is promising because they are open and inexpensive to obtain. We propose a novel method to predict the success of a crowdfunding project based on the introductory text. To test the performance of the proposed method, in our study, texts related to 1,980 actual crowdfunding projects were collected and empirically analyzed. From the text data set, the following details about the projects were collected: category, number of replies, funding goal, fundraising method, reward, number of SNS followers, number of images and videos, and miscellaneous numeric data. These factors were identified as significant input features to be used in classification algorithms. The results suggest that the proposed method outperforms other recently proposed, non-text-based methods in terms of accuracy, F-score, and elapsed time.

Analyzing Contextual Polarity of Unstructured Data for Measuring Subjective Well-Being (주관적 웰빙 상태 측정을 위한 비정형 데이터의 상황기반 긍부정성 분석 방법)

  • Choi, Sukjae;Song, Yeongeun;Kwon, Ohbyung
    • Journal of Intelligence and Information Systems
    • /
    • v.22 no.1
    • /
    • pp.83-105
    • /
    • 2016
  • Measuring an individual's subjective wellbeing in an accurate, unobtrusive, and cost-effective manner is a core success factor of the wellbeing support system, which is a type of medical IT service. However, measurements with a self-report questionnaire and wearable sensors are cost-intensive and obtrusive when the wellbeing support system should be running in real-time, despite being very accurate. Recently, reasoning the state of subjective wellbeing with conventional sentiment analysis and unstructured data has been proposed as an alternative to resolve the drawbacks of the self-report questionnaire and wearable sensors. However, this approach does not consider contextual polarity, which results in lower measurement accuracy. Moreover, there is no sentimental word net or ontology for the subjective wellbeing area. Hence, this paper proposes a method to extract keywords and their contextual polarity representing the subjective wellbeing state from the unstructured text in online websites in order to improve the reasoning accuracy of the sentiment analysis. The proposed method is as follows. First, a set of general sentimental words is proposed. SentiWordNet was adopted; this is the most widely used dictionary and contains about 100,000 words such as nouns, verbs, adjectives, and adverbs with polarities from -1.0 (extremely negative) to 1.0 (extremely positive). Second, corpora on subjective wellbeing (SWB corpora) were obtained by crawling online text. A survey was conducted to prepare a learning dataset that includes an individual's opinion and the level of self-report wellness, such as stress and depression. The participants were asked to respond with their feelings about online news on two topics. Next, three data sources were extracted from the SWB corpora: demographic information, psychographic information, and the structural characteristics of the text (e.g., the number of words used in the text, simple statistics on the special characters used). These were considered to adjust the level of a specific SWB. Finally, a set of reasoning rules was generated for each wellbeing factor to estimate the SWB of an individual based on the text written by the individual. The experimental results suggested that using contextual polarity for each SWB factor (e.g., stress, depression) significantly improved the estimation accuracy compared to conventional sentiment analysis methods incorporating SentiWordNet. Even though literature is available on Korean sentiment analysis, such studies only used only a limited set of sentimental words. Due to the small number of words, many sentences are overlooked and ignored when estimating the level of sentiment. However, the proposed method can identify multiple sentiment-neutral words as sentiment words in the context of a specific SWB factor. The results also suggest that a specific type of senti-word dictionary containing contextual polarity needs to be constructed along with a dictionary based on common sense such as SenticNet. These efforts will enrich and enlarge the application area of sentic computing. The study is helpful to practitioners and managers of wellness services in that a couple of characteristics of unstructured text have been identified for improving SWB. Consistent with the literature, the results showed that the gender and age affect the SWB state when the individual is exposed to an identical queue from the online text. In addition, the length of the textual response and usage pattern of special characters were found to indicate the individual's SWB. These imply that better SWB measurement should involve collecting the textual structure and the individual's demographic conditions. In the future, the proposed method should be improved by automated identification of the contextual polarity in order to enlarge the vocabulary in a cost-effective manner.

Cultural Politics of Gendered Schadenfreude Surrounding an Idol Focusing on the debate over IU (아이돌을 둘러싼 젠더화된 샤덴프로이데(Schadenfreude)의 문화정치학 <아이유 사태>를 중심으로)

  • Kim, Hyun Gyung
    • Korean journal of communication and information
    • /
    • v.80
    • /
    • pp.115-142
    • /
    • 2016
  • This study aims to reveal the content of and logic behind a recent negative public sentiment toward female idols with the example of a debate over songstress IU's fourth album that was released late last year. While previous studies on fandom have focused on the identification process towards entertainers and making community, a recent phenomenon of "anti-fandom" or "malicious comments" implies that more research is needed on negative emotions such as hostility or schadenfreude (feelings of pleasure from others' misfortunes). Schadenfreude is a social sentiment that originated in modern liberalism, which features contradictions between public equality and private ownership, and that has been intensified in neoliberalism, which features a maximization of this contradiction centering on a meritocracy. Celebrities in Korea often become the targets of schadenfreude, which is associated with the suspicion that they gain popularity not from their abilities but from "just being popular." It should also be noted that this kind of schadenfreude operates differently between male and female entertainers. Specifically, the acquisition of money and fame by modern women whose presence used to be located in the private possessions of males is considered to be due to their unjustified use of sexuality. This is also the background of the recent online misogyny culture in Korea. In this context, IU, who had been successful at building a differentiated image of "sister-like idol artist," became a valid target. Although accusing IU of utilizing pedophilia reflects a stalemate that a current politics of sexual violence faces, it rather damages the name of an individual than attracts public attention to the structural causes of childsexualabuse. This is why I see the way that pedophilia was used in the debate over IU as a schadenfreude. Consequently, the term pedophilia here contributes to an expansion of the entertainment economy that is sustained by rises and falls of the celebrities' stock prices.

  • PDF

Electronic Word-of-Mouth in B2C Virtual Communities: An Empirical Study from CTrip.com (B2C허의사구중적전자구비(B2C虚拟社区中的电子口碑): 관우휴정려유망적실증연구(关于携程旅游网的实证研究))

  • Li, Guoxin;Elliot, Statia;Choi, Chris
    • Journal of Global Scholars of Marketing Science
    • /
    • v.20 no.3
    • /
    • pp.262-268
    • /
    • 2010
  • Virtual communities (VCs) have developed rapidly, with more and more people participating in them to exchange information and opinions. A virtual community is a group of people who may or may not meet one another face to face, and who exchange words and ideas through the mediation of computer bulletin boards and networks. A business-to-consumer virtual community (B2CVC) is a commercial group that creates a trustworthy environment intended to motivate consumers to be more willing to buy from an online store. B2CVCs create a social atmosphere through information contribution such as recommendations, reviews, and ratings of buyers and sellers. Although the importance of B2CVCs has been recognized, few studies have been conducted to examine members' word-of-mouth behavior within these communities. This study proposes a model of involvement, statistics, trust, "stickiness," and word-of-mouth in a B2CVC and explores the relationships among these elements based on empirical data. The objectives are threefold: (i) to empirically test a B2CVC model that integrates measures of beliefs, attitudes, and behaviors; (ii) to better understand the nature of these relationships, specifically through word-of-mouth as a measure of revenue generation; and (iii) to better understand the role of stickiness of B2CVC in CRM marketing. The model incorporates three key elements concerning community members: (i) their beliefs, measured in terms of their involvement assessment; (ii) their attitudes, measured in terms of their satisfaction and trust; and, (iii) their behavior, measured in terms of site stickiness and their word-of-mouth. Involvement is considered the motivation for consumers to participate in a virtual community. For B2CVC members, information searching and posting have been proposed as the main purpose for their involvement. Satisfaction has been reviewed as an important indicator of a member's overall community evaluation, and conceptualized by different levels of member interactions with their VC. The formation and expansion of a VC depends on the willingness of members to share information and services. Researchers have found that trust is a core component facilitating the anonymous interaction in VCs and e-commerce, and therefore trust-building in VCs has been a common research topic. It is clear that the success of a B2CVC depends on the stickiness of its members to enhance purchasing potential. Opinions communicated and information exchanged between members may represent a type of written word-of-mouth. Therefore, word-of-mouth is one of the primary factors driving the diffusion of B2CVCs across the Internet. Figure 1 presents the research model and hypotheses. The model was tested through the implementation of an online survey of CTrip Travel VC members. A total of 243 collected questionnaires was reduced to 204 usable questionnaires through an empirical process of data cleaning. The study's hypotheses examined the extent to which involvement, satisfaction, and trust influence B2CVC stickiness and members' word-of-mouth. Structural Equation Modeling tested the hypotheses in the analysis, and the structural model fit indices were within accepted thresholds: ${\chi}^2^$/df was 2.76, NFI was .904, IFI was .931, CFI was .930, and RMSEA was .017. Results indicated that involvement has a significant influence on satisfaction (p<0.001, ${\beta}$=0.809). The proportion of variance in satisfaction explained by members' involvement was over half (adjusted $R^2$=0.654), reflecting a strong association. The effect of involvement on trust was also statistically significant (p<0.001, ${\beta}$=0.751), with 57 percent of the variance in trust explained by involvement (adjusted $R^2$=0.563). When the construct "stickiness" was treated as a dependent variable, the proportion of variance explained by the variables of trust and satisfaction was relatively low (adjusted $R^2$=0.331). Satisfaction did have a significant influence on stickiness, with ${\beta}$=0.514. However, unexpectedly, the influence of trust was not even significant (p=0.231, t=1.197), rejecting that proposed hypothesis. The importance of stickiness in the model was more significant because of its effect on e-WOM with ${\beta}$=0.920 (p<0.001). Here, the measures of Stickiness explain over eighty of the variance in e-WOM (Adjusted $R^2$=0.846). Overall, the results of the study supported the hypothesized relationships between members' involvement in a B2CVC and their satisfaction with and trust of it. However, trust, as a traditional measure in behavioral models, has no significant influence on stickiness in the B2CVC environment. This study contributes to the growing body of literature on B2CVCs, specifically addressing gaps in the academic research by integrating measures of beliefs, attitudes, and behaviors in one model. The results provide additional insights to behavioral factors in a B2CVC environment, helping to sort out relationships between traditional measures and relatively new measures. For practitioners, the identification of factors, such as member involvement, that strongly influence B2CVC member satisfaction can help focus technological resources in key areas. Global e-marketers can develop marketing strategies directly targeting B2CVC members. In the global tourism business, they can target Chinese members of a B2CVC by providing special discounts for active community members or developing early adopter programs to encourage stickiness in the community. Future studies are called for, and more sophisticated modeling, to expand the measurement of B2CVC member behavior and to conduct experiments across industries, communities, and cultures.

Multi-level Analysis of the Antecedents of Knowledge Transfer: Integration of Social Capital Theory and Social Network Theory (지식이전 선행요인에 관한 다차원 분석: 사회적 자본 이론과 사회연결망 이론의 결합)

  • Kang, Minhyung;Hau, Yong Sauk
    • Asia pacific journal of information systems
    • /
    • v.22 no.3
    • /
    • pp.75-97
    • /
    • 2012
  • Knowledge residing in the heads of employees has always been regarded as one of the most critical resources within a firm. However, many tries to facilitate knowledge transfer among employees has been unsuccessful because of the motivational and cognitive problems between the knowledge source and the recipient. Social capital, which is defined as "the sum of the actual and potential resources embedded within, available through, derived from the network of relationships possessed by an individual or social unit [Nahapiet and Ghoshal, 1998]," is suggested to resolve these motivational and cognitive problems of knowledge transfer. In Social capital theory, there are two research streams. One insists that social capital strengthens group solidarity and brings up cooperative behaviors among group members, such as voluntary help to colleagues. Therefore, social capital can motivate an expert to transfer his/her knowledge to a colleague in need without any direct reward. The other stream insists that social capital provides an access to various resources that the owner of social capital doesn't possess directly. In knowledge transfer context, an employee with social capital can access and learn much knowledge from his/her colleagues. Therefore, social capital provides benefits to both the knowledge source and the recipient in different ways. However, prior research on knowledge transfer and social capital is mostly limited to either of the research stream of social capital and covered only the knowledge source's or the knowledge recipient's perspective. Social network theory which focuses on the structural dimension of social capital provides clear explanation about the in-depth mechanisms of social capital's two different benefits. 'Strong tie' builds up identification, trust, and emotional attachment between the knowledge source and the recipient; therefore, it motivates the knowledge source to transfer his/her knowledge to the recipient. On the other hand, 'weak tie' easily expands to 'diverse' knowledge sources because it does not take much effort to manage. Therefore, the real value of 'weak tie' comes from the 'diverse network structure,' not the 'weak tie' itself. It implies that the two different perspectives on strength of ties can co-exist. For example, an extroverted employee can manage many 'strong' ties with 'various' colleagues. In this regards, the individual-level structure of one's relationships as well as the dyadic-level relationship should be considered together to provide a holistic view of social capital. In addition, interaction effect between individual-level characteristics and dyadic-level characteristics can be examined, too. Based on these arguments, this study has following research questions. (1) How does the social capital of the knowledge source and the recipient influence knowledge transfer respectively? (2) How does the strength of ties between the knowledge source and the recipient influence knowledge transfer? (3) How does the social capital of the knowledge source and the recipient influence the effect of the strength of ties between the knowledge source and the recipient on knowledge transfer? Based on Social capital theory and Social network theory, a multi-level research model is developed to consider both the individual-level social capital of the knowledge source and the recipient and the dyadic-level strength of relationship between the knowledge source and the recipient. 'Cross-classified random effect model,' one of the multi-level analysis methods, is adopted to analyze the survey responses from 337 R&D employees. The results of analysis provide several findings. First, among three dimensions of the knowledge source's social capital, network centrality (i.e., structural dimension) shows the significant direct effect on knowledge transfer. On the other hand, the knowledge recipient's network centrality is not influential. Instead, it strengthens the influence of the strength of ties between the knowledge source and the recipient on knowledge transfer. It means that the knowledge source's network centrality does not directly increase knowledge transfer. Instead, by providing access to various knowledge sources, the network centrality provides only the context where the strong tie between the knowledge source and the recipient leads to effective knowledge transfer. In short, network centrality has indirect effect on knowledge transfer from the knowledge recipient's perspective, while it has direct effect from the knowledge source's perspective. This is the most important contribution of this research. In addition, contrary to the research hypothesis, company tenure of the knowledge recipient negatively influences knowledge transfer. It means that experienced employees do not look for new knowledge and stick to their own knowledge. This is also an interesting result. One of the possible reasons is the hierarchical culture of Korea, such as a fear of losing face in front of subordinates. In a research methodology perspective, multi-level analysis adopted in this study seems to be very promising in management research area which has a multi-level data structure, such as employee-team-department-company. In addition, social network analysis is also a promising research approach with an exploding availability of online social network data.

  • PDF

User-Perspective Issue Clustering Using Multi-Layered Two-Mode Network Analysis (다계층 이원 네트워크를 활용한 사용자 관점의 이슈 클러스터링)

  • Kim, Jieun;Kim, Namgyu;Cho, Yoonho
    • Journal of Intelligence and Information Systems
    • /
    • v.20 no.2
    • /
    • pp.93-107
    • /
    • 2014
  • In this paper, we report what we have observed with regard to user-perspective issue clustering based on multi-layered two-mode network analysis. This work is significant in the context of data collection by companies about customer needs. Most companies have failed to uncover such needs for products or services properly in terms of demographic data such as age, income levels, and purchase history. Because of excessive reliance on limited internal data, most recommendation systems do not provide decision makers with appropriate business information for current business circumstances. However, part of the problem is the increasing regulation of personal data gathering and privacy. This makes demographic or transaction data collection more difficult, and is a significant hurdle for traditional recommendation approaches because these systems demand a great deal of personal data or transaction logs. Our motivation for presenting this paper to academia is our strong belief, and evidence, that most customers' requirements for products can be effectively and efficiently analyzed from unstructured textual data such as Internet news text. In order to derive users' requirements from textual data obtained online, the proposed approach in this paper attempts to construct double two-mode networks, such as a user-news network and news-issue network, and to integrate these into one quasi-network as the input for issue clustering. One of the contributions of this research is the development of a methodology utilizing enormous amounts of unstructured textual data for user-oriented issue clustering by leveraging existing text mining and social network analysis. In order to build multi-layered two-mode networks of news logs, we need some tools such as text mining and topic analysis. We used not only SAS Enterprise Miner 12.1, which provides a text miner module and cluster module for textual data analysis, but also NetMiner 4 for network visualization and analysis. Our approach for user-perspective issue clustering is composed of six main phases: crawling, topic analysis, access pattern analysis, network merging, network conversion, and clustering. In the first phase, we collect visit logs for news sites by crawler. After gathering unstructured news article data, the topic analysis phase extracts issues from each news article in order to build an article-news network. For simplicity, 100 topics are extracted from 13,652 articles. In the third phase, a user-article network is constructed with access patterns derived from web transaction logs. The double two-mode networks are then merged into a quasi-network of user-issue. Finally, in the user-oriented issue-clustering phase, we classify issues through structural equivalence, and compare these with the clustering results from statistical tools and network analysis. An experiment with a large dataset was performed to build a multi-layer two-mode network. After that, we compared the results of issue clustering from SAS with that of network analysis. The experimental dataset was from a web site ranking site, and the biggest portal site in Korea. The sample dataset contains 150 million transaction logs and 13,652 news articles of 5,000 panels over one year. User-article and article-issue networks are constructed and merged into a user-issue quasi-network using Netminer. Our issue-clustering results applied the Partitioning Around Medoids (PAM) algorithm and Multidimensional Scaling (MDS), and are consistent with the results from SAS clustering. In spite of extensive efforts to provide user information with recommendation systems, most projects are successful only when companies have sufficient data about users and transactions. Our proposed methodology, user-perspective issue clustering, can provide practical support to decision-making in companies because it enhances user-related data from unstructured textual data. To overcome the problem of insufficient data from traditional approaches, our methodology infers customers' real interests by utilizing web transaction logs. In addition, we suggest topic analysis and issue clustering as a practical means of issue identification.