• Title/Summary/Keyword: online ratings

Search Result 106, Processing Time 0.024 seconds

Semantic analysis via application of deep learning using Naver movie review data (네이버 영화 리뷰 데이터를 이용한 의미 분석(semantic analysis))

  • Kim, Sojin;Song, Jongwoo
    • The Korean Journal of Applied Statistics
    • /
    • v.35 no.1
    • /
    • pp.19-33
    • /
    • 2022
  • With the explosive growth of social media, its abundant text-based data generated by web users has become an important source for data analysis. For example, we often witness online movie reviews from the 'Naver Movie' affecting the general public to decide whether they should watch the movie or not. This study has conducted analysis on the Naver Movie's text-based review data to predict the actual ratings. After examining the distribution of movie ratings, we performed semantics analysis using Korean Natural Language Processing. This research sought to find the best review rating prediction model by comparing machine learning and deep learning models. We also compared various regression and classification models in 2-class and multi-class cases. Lastly we explained the causes of review misclassification related to movie review data characteristics.

Improvement of a Product Recommendation Model using Customers' Search Patterns and Product Details

  • Lee, Yunju;Lee, Jaejun;Ahn, Hyunchul
    • Journal of the Korea Society of Computer and Information
    • /
    • v.26 no.1
    • /
    • pp.265-274
    • /
    • 2021
  • In this paper, we propose a novel recommendation model based on Doc2vec using search keywords and product details. Until now, a lot of prior studies on recommender systems have proposed collaborative filtering (CF) as the main algorithm for recommendation, which uses only structured input data such as customers' purchase history or ratings. However, the use of unstructured data like online customer review in CF may lead to better recommendation. Under this background, we propose to use search keyword data and product detail information, which are seldom used in previous studies, for product recommendation. The proposed model makes recommendation by using CF which simultaneously considers ratings, search keywords and detailed information of the products purchased by customers. To extract quantitative patterns from these unstructured data, Doc2vec is applied. As a result of the experiment, the proposed model was found to outperform the conventional recommendation model. In addition, it was confirmed that search keywords and product details had a significant effect on recommendation. This study has academic significance in that it tries to apply the customers' online behavior information to the recommendation system and that it mitigates the cold start problem, which is one of the critical limitations of CF.

Effects of Experiential Fishing Village Authenticity on Experience Value and Subjective Well-being (어촌체험휴양마을의 고유성이 체험가치와 주관적 행복감에 미치는 영향)

  • Sung-Dae Cho;Chang-Soo Kim
    • The Journal of Fisheries Business Administration
    • /
    • v.55 no.1
    • /
    • pp.55-76
    • /
    • 2024
  • The purpose of this study is to elucidate the impact of authenticity on experience value and subjective well-being among visitors who have participated in direct experiential activities in experiential fishing villages. The research method used literature research methods and empirical research methods using questionnaires, and this questionnaire was composed by determining three major variables and seven constituent factors for each variable through factor analysis and conducting prior research and preliminary surveys. The survey was conducted from February 5, 2023 to April 5, 2023 among experimental fishing villages with excellent ratings for scenery (environment), service, experience, accommodation, and food, and four villages that can experience tidal flats and manage customers online. The survey was conducted from February 5, 2023 to April 5, 2023, among experimental fishing villages with excellent ratings for scenery (environment), service, experience, accommodation, and food, and four villages that can experience tidal flats and manage customers online. The results of this study are as follows. First, the factors of authenticity in experiential fishing villages include three sub-factors: objective authenticity, constructive authenticity, and existential authenticity. The factors of experience value include two sub-factors: emotional values and functional values. Subjective well-being is derived from positive emotion and life satisfaction. Second, upon examining the importance of authenticity in experiential fishing villages, it was found that existential authenticity and objective authenticity, in that order, have a significant impact on emotional values. However, constructive authenticity did not have a significant impact on emotional values. Third, in terms of functional values, constructive authenticity, existential authenticity, and objective authenticity, in that order, had a significant impact. Fourth, experience value, in the order of emotional values and functional values, had a significant impact on positive emotion and life satisfaction of subjective well-being. Therefore, it was confirmed that the authenticity of experiential fishing villages is important as a strategy to enhance experience value and subjective well-being. Especially, considering that the majority of visitors to experiential fishing villages are family-centered (86.5%), applying marketing management strategies to develop programs that enhance existential authenticity and improve emotional values could elevate the subjective well-being of experiential visitors.

A Study about The Impact of Music Recommender Systems on Online Digital Music Rankings (음원 추천시스템이 온라인 디지털 음원차트에 미치는 파급효과에 대한 연구)

  • Kim, HyunMo;Kim, MinYong;Park, JaeHong
    • Information Systems Review
    • /
    • v.16 no.3
    • /
    • pp.49-68
    • /
    • 2014
  • These days, consumers have increasingly preferred to digital real-time streamlining and downloading to listen to music because this is convenient and affordable for the consumers. Accordingly, sales of music in compact disk formats have steadily declined. In this regards, online digital music has become a new communication channel to listen musics, where digital files can be delivered over various online networks to people's computing devices. The majority of online digital music distributors has Music Recommender Systems for sales of digital music on their websites. Music Recommender Systems are parts of information filtering systems that provide the ratings or preferences that users give to music. Korean online digital music distributors have Music Recommender Systems. But those online music distributors didn't provide any rules or clear procedures that recommend music. Therefore, we raise important questions as follows: "Is Music Recommender Systems Fair?", "What is the impact of Music Recommender Systems on online music rankings and sales?" While previous studies have focused on usefulness of Music Recommender Systems, this study investigates not only fairness of Current Music Recommender Systems but also Relationship between Music Recommender Systems and online Music Charts. This study examines these issues based on Bandwagon effect, ranking effect, Slot effect theories. For our empirical analysis, we selected the most famous five online digital music distributors in terms of market shares. We found that all recommended music is exposed to the top of 'daily music charts' in online digital music distributors' websites. We collected music ranking data and recommended music data from 'daily music chart' during a one month. The result shows that online music recommender systems are not fair, since they mainly recommend particular music that supported by a specific music production company. In addition, the recommended music are always exposed to the top of music ranking charts. We also find that recommended music usually appear at the top 20 ranking charts within one or two days. Also, the most music in the top 50 or 100 ranks are the recommended music. Moreover, recommended music usually remain the ranking charts more than one month while non-recommended music often disappear at the ranking charts within two week. Our study provides an important implication to online music industry. Because music recommender systems and music ranking charts are closely related, music distributors may improperly use their recommender systems to boost the sales of music that related to their own companies. Therefore, online digital music distributor must clearly announce the rules and procedures about music recommender systems for the better music industry.

Methodology for Identifying Key Factors in Sentiment Analysis by Customer Characteristics Using Attention Mechanism

  • Lee, Kwangho;Kim, Namgyu
    • Journal of the Korea Society of Computer and Information
    • /
    • v.25 no.3
    • /
    • pp.207-218
    • /
    • 2020
  • Recently, due to the increase of online reviews and the development of analysis technology, the interest and demand for online review analysis continues to increase. However, previous studies have not considered the emotions contained in each vocabulary may differ from one reviewer to another. Therefore, this study first classifies the customer group according to the customer's grade, and presents the result of analyzing the difference by performing review analysis for each customer group. We found that the price factor had a significant influence on the evaluation of products for customers with high ratings. On the contrary, in the case of low-grade customers, the degree of correspondence between the contents introduced in the mall and the actual product significantly influenced the evaluation of the product. We expect that the proposed methodology can be effectively used to establish differentiated marketing strategies by identifying factors that affect product evaluation by customer group.

A Study on the Evaluation Differences of Korean and Chinese Users in Smart Home App Services through Text Mining based on the Two-Factor Theory: Focus on Trustness (이요인 이론 기반 텍스트 마이닝을 통한 한·중 스마트홈 앱 서비스 사용자 평가 차이에 대한 연구: 신뢰성 중심)

  • Yuning Zhao;Gyoo Gun Lim
    • Journal of Information Technology Services
    • /
    • v.22 no.3
    • /
    • pp.141-165
    • /
    • 2023
  • With the advent of the fourth industrial revolution, technologies such as the Internet of Things, artificial intelligence and cloud computing are developing rapidly, and smart homes enabled by these technologies are rapidly gaining popularity. To gain a competitive advantage in the global market, companies must understand the differences in consumer needs in different countries and cultures and develop corresponding business strategies. Therefore, this study conducts a comparative analysis of consumer reviews of smart homes in South Korea and China. This study collected online reviews of SmartThings, ThinQ, Msmarthom, and MiHome, the four most commonly used smart home apps in Korea and China. The collected review data is divided into satisfied reviews and dissatisfied reviews according to the ratings, and topics are extracted for each review dataset using LDA topic modeling. Next, the extracted topics are classified according to five evaluation factors of Perceived Usefulness, Reachability, Interoperability,Trustness, and Product Brand proposed by previous studies. Then, by comparing the importance of each evaluation factor in the two datasets of satisfaction and dissatisfaction, we find out the factors that affect consumer satisfaction and dissatisfaction, and compare the differences between users in Korea and China. We found Trustness and Reachability are very important factors. Finally, through language network analysis, the relationship between dissatisfied factors is analyzed from a more microscopic level, and improvement plans are proposed to the companies according to the analysis results.

Could a Product with Diverged Reviews Ratings Be Better?: The Change of Consumer Attitude Depending on the Converged vs. Diverged Review Ratings and Consumer's Regulatory Focus (평점이 수렴되지 않는 리뷰의 제품들이 더 좋을 수도 있을까?: 제품 리뷰평점의 분산과 소비자의 조절초점 성향에 따른 소비자 태도 변화)

  • Yi, Eunju;Park, Do-Hyung
    • Knowledge Management Research
    • /
    • v.22 no.3
    • /
    • pp.273-293
    • /
    • 2021
  • Due to the COVID-19 pandemic, the size of the e-commerce has been increased rapidly. This pandemic, which made contact-less communication culture in everyday life made the e-commerce market to be opened even to the consumers who would hesitate to purchase and pay by electronic device without any personal contacts and seeing or touching the real products. Consumers who have experienced the easy access and convenience of the online purchase would continue to take those advantages even after the pandemic. During this time of transformation, however, the size of information source for the consumers has become even shrunk into a flat screen and limited to visual only. To provide differentiated and competitive information on products, companies are adopting AR/VR and steaming technologies but the reviews from the honest users need to be recognized as important in that it is regarded as strong as the well refined product information provided by marketing professionals of the company and companies may obtain useful insight for product development, marketing and sales strategies. Then from the consumer's point of view, if the ratings of reviews are widely diverged how consumers would process the review information before purchase? Are non-converged ratings always unreliable and worthless? In this study, we analyzed how consumer's regulatory focus moderate the attitude to process the diverged information. This experiment was designed as a 2x2 factorial study to see how the variance of product review ratings (high vs. low) for cosmetics affects product attitudes by the consumers' regulatory focus (prevention focus vs. improvement focus). As a result of the study, it was found that prevention-focused consumers showed high product attitude when the review variance was low, whereas promotion-focused consumers showed high product attitude when the review variance was high. With such a study, this thesis can explain that even if a product with exactly the same average rating, the converged or diverged review can be interpreted differently by customer's regulatory focus. This paper has a theoretical contribution to elucidate the mechanism of consumer's information process when the information is not converged. In practice, as reviews and sales records of each product are accumulated, as an one of applied knowledge management types with big data, companies may develop and provide even reinforced customer experience by providing personalized and optimized products and review information.

The Effect of Accumulation of Product Review Information on the Rating of Online Shopping Mall Products (구매후기 정보 누적이 온라인 쇼핑몰 제품의 평점에 미치는 영향)

  • Lee, Sueng-yong
    • Asia-Pacific Journal of Business Venturing and Entrepreneurship
    • /
    • v.19 no.4
    • /
    • pp.201-214
    • /
    • 2024
  • This study derived an effective way to expose information on product reviews by analyzing how the accumulation of information on reviews of online shopping malls, which are receiving a lot of attention amid the rapid increase in non-face-to-face transactions with small and medium-sized venture companies with insufficient resources, affects product review ratings. Hypotheses were derived based on the main theory of behavioral economics and the theory of consumer expectation inconsistency, and for empirical research, the effect of the accumulation of information on product reviews were analyzed from a short and long-term perspective using Amazon's product reviews and seller information big data. For the empirical study, 9,092,480 reviews written for 378,411 products of Amazon were used, and the hypotheses were verified through hierarchical regression analysis. As a result of the analysis, it was found that the average rating decreased as the number of reviews increased. It was found that the product with a large number of recent reviews had a high rating. The characteristics of the product showed a moderating effect on these effects. This study will provide a new theoretical basis for research related to product review, and will help small and medium-sized venture companies that focus on sales through online shopping malls due to lack of resources to increase sales performance by appropriately utilizing review information. It will also provide empirical insights into effective product review information exposure measures for online shopping mall managers.

  • PDF

Utilization of SNS Review Data for a Comparison between Low Cost Carrier and Full Service Carrier (SNS 리뷰데이터의 활용 : 저가항공사와 대형항공사를 중심으로)

  • Woo, Mina
    • Journal of Information Technology Services
    • /
    • v.17 no.3
    • /
    • pp.1-16
    • /
    • 2018
  • There exist a number of studies pertaining to the determinants of customer satisfaction between low-cost and full-service carriers in the airline industry. Most studies measured service quality using SERVQUAL based on a survey method. This study offers a new perspective by employing a big data analytic approach using SNS data, which reflects the immediate response of customers as well as trends in real time. This study chose eight factors from TripAdvisor's customer review site as determinants of customer satisfaction and compared the differences between low-cost and full-service airlines. The factors analyzed were seat comfort, customer service, cleanliness, food and beverage, legroom, entertainment, value for money, and check-in and boarding. Additionally, ratings from domestic and foreign customers were compared. The findings show that customer service and value for money are significant factors in satisfaction with low-cost airlines while all variables except legroom and entertainment are significant for full-service airlines. The results show that SNS-based data and analysis of big data are important for improving decision-making effectiveness and increasing customer satisfaction in the airline industry.

Finding Rotten Eggs: A Review Spam Detection Model using Diverse Feature Sets

  • Akram, Abubakker Usman;Khan, Hikmat Ullah;Iqbal, Saqib;Iqbal, Tassawar;Munir, Ehsan Ullah;Shafi, Dr. Muhammad
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.10
    • /
    • pp.5120-5142
    • /
    • 2018
  • Social media enables customers to share their views, opinions and experiences as product reviews. These product reviews facilitate customers in buying quality products. Due to the significance of online reviews, fake reviews, commonly known as spam reviews are generated to mislead the potential customers in decision-making. To cater this issue, review spam detection has become an active research area. Existing studies carried out for review spam detection have exploited feature engineering approach; however limited number of features are considered. This paper proposes a Feature-Centric Model for Review Spam Detection (FMRSD) to detect spam reviews. The proposed model examines a wide range of feature sets including ratings, sentiments, content, and users. The experimentation reveals that the proposed technique outperforms the baseline and provides better results.