Purpose: This study explored the meaning of the social perceptions of nurses in online news articles during the coronavirus disease 2019 (COVID-19) pandemic. Methods: A total of 339 nurse-related articles published in Korean online newspapers from January 1 to December 31, 2020, were extracted by entering various combinations of OR and AND with the four words "Corona," "COVID," "Nursing," and "Nurse" as search keywords using BIGKinds, a news database provided by the Korea Press Foundation. The collected data were analyzed with a keyword network analysis and topic modeling using NetMiner 4. Results: The top keywords extracted from the nurse-related news articles were, in the following order, "metropolitan area," "protective clothing," "government," "task," and "admission." Four topics representing keywords were identified: "encouragement for dedicated nurses," "poor work environment," "front-line nurses working with obligation during the COVID-19 pandemic," and "nurses' efforts to prevent the spread of COVID-19." Conclusion: The media's attention to the dedication of nurses, the shortage of nursing resources, and the need for government support is encouraging in that it forms the public opinion necessary to lead to substantial improvements in treating nurses. The nursing community should actively promote policy proposals to improve treatment toward nurses by utilizing the net function of the media and proactively seek and apply strategies to improve the image of nurses working in various fields.
With the development of the Internet and the increase of smart phones, various services considering user convenience are increasing, so that users can check news in real time anytime and anywhere. However, online news is categorized by media and category, and it provides only a few related search terms, making it difficult to find related news related to keywords. In order to solve this problem, we propose a method to recommend related documents more accurately by applying Doc2Vec similarity to the specific keywords of news articles and weighting the title and contents of news articles. We collect news articles from Naver politics category by web crawling in Java environment, preprocess them, extract topics using LDA modeling, and find similarities using Doc2Vec. To supplement Doc2Vec, we apply TF-IDF to obtain TC(Title Contents) weights for the title and contents of news articles. Then we combine Doc2Vec similarity and TC weight to generate TC weight-similarity and evaluate the similarity between words using PMI technique to confirm the keyword association.
본 연구의 목적은 포털 뉴스 콘텐츠의 이용정도가 이용자들의 의견·정보 교환이나 사회적 신뢰수준과 어떤 연관성을 가지고 있는지에 대해 실증적으로 분석하는데 있다. 이를 위해 인구 사회학적 대표성을 갖춘 1,100명의 표본을 대상으로 온라인 서베이 조사를 실시했다. 포털 뉴스 이용 정도는 PNRBS(Portal News Readership Behavior Score)라 불리는 복합지수를 구성해 측정했고, 의견·정보교환 정도나 사회적 신뢰수준은 관련 연구들에서 사용된 지표들 중에서 일부를 취합해 구성한 지수로 측정했다. 연구 결과 포털뉴스이용과 사회적 신뢰는 선형적 상관성이 아닌 V자형 관계를 보이고 있었다. 구체적으로 포털 뉴스를 전혀 이용하지 않는 집단의 사회적 신뢰 수준이 가장 높았고 경이용(Light user) 집단의 신뢰 수준이 가장 낮았다. 중이용 집단의 신뢰 수준은 비용자들보다는 낮았지만 경이용자들 보다는 높았다.
Broadcast news transcription is one of the hardest tasks in speech recognition because broadcast speech signals have much variability in speech quality, channel and background conditions. We developed a Korean broadcast news speech recognizer. We used a morpheme-based dictionary and a language model to reduce the out-of·vocabulary (OOV) rate. We concatenated the original morpheme pairs of short length or high frequency in order to reduce insertion and deletion errors due to short morphemes. We used a lexicon with multiple pronunciations to reflect inter-morpheme pronunciation variations without severe modification of the search tree. By using the merged morpheme as recognition units, we achieved the OOV rate of 1.7% comparable to European languages with 64k vocabulary. We implemented a hidden Markov model-based recognizer with vocal tract length normalization and online speaker adaptation by maximum likelihood linear regression. Experimental results showed that the recognizer yielded 21.8% morpheme error rate for anchor speech and 31.6% for mostly noisy reporter speech.
This research is a combination of qualitative and quantitative methods. It analyzed reputation factors for the personal branding of journalists in Thailand. Research tools were in-depth interviews and an online questionnaire with 33 variables. Eleven journalists and informed sources were interviewed. A total of 1,262 survey respondents were divided into three groups including 586 recipients, 416 news people, and 260 academics. Data were analyzed using content analysis and factor analysis. It was found that the reputation factors for the personal branding of journalists in Thailand consisted of 1) the professionalism in rich and reliable news reporting, 2) the ability to use communication technology that increases prominence and career opportunities 3) the social responsibility in reporting news events, 4) the key opinion leaders who speak up for people to monitor in the government for peace in society, and 5) the use of experience in developing news reporting capabilities.
As a social being, people can cooperate and control one another through the power of reputation, which is a critical opinion of someone given by others. Nevertheless, there have been obstacles in clarifying the identity of traditional types of reputation, for they are mostly words of mouth passed among members of a society. However, due to dramatic technological advancement and widespread use of the Internet and social media, now we can clearly see and analyze written reputations, which used to be passed only from mouth to mouth. Against this background, this study examines whether a negativity bias-a notion that an event of a more negative nature has a greater effect on one's psychological state than a positive event-applies to spread of reputation online, and examines related factors and effects. To this end, reputation-related online comments left by social media users during the election period of Korea's 6th provincial election on 4 June 2014 were analyzed. For the analysis, a Bass diffusion model was used, which is based on the innovation diffusion theory. The analysis results confirmed that, at online forum, negative reputations spread more quickly and more widely than positive ones, had a greater impact, and mass media such as online news outlets had a significant influence on spread of reputation online.
Are intentions important in deciding the outcome of an action such as sharing misinformation among social media users during the pandemic? What is their role and how far they are important for the very act of fake sharing news? The social media users' actions on the social platform are determined by what they plan to do themselves; however, their motivation has an immense role to play in the dissemination of fake news on social media. The study proposes a conceptual model for understanding how select factors affect fake news sharing motivation and intentions of social media users. The study scrutinizes the relationship between content and context, fear of missing out (FoMO), news verification and news sharing gratification on the motivation and intention of social media users of networked Asian society. Empirical Data were drawn from social media users (N = 243) from India, using an online questionnaire based on prior studies and structural equation modeling (SEM) approach was used to analyze the data collected. Results indicate that news content, news verification, and news sharing gratification have a direct and positive relationship with sharing motivation. On the other hand, news context and content, FoMO and news sharing gratification have a positive significant relationship with sharing intention. Likewise, it was discovered that news verification will decrease sharing intention of the social media users. However, news context, that is the pandemic in the case of the present study and FoMO were not identified as determinant variables for sharing motivation among social media users. The research limitations and further scope were discussed.
이 연구는 웹보메트릭스를 활용한 지역관광자원 발굴 및 뉴스 네트워크를 대구 수성구를 중심으로 분석한 연구이다. 데이터는 Bing, Naver 등 웹 데이터를 사용했으며, 네트워크 분석과 댓글 분석을 하였다. 연구문제는 총 세가지로 첫째, 대구 내부에서 수성구의 검색엔진 최적화 수준은 어떠한가? 둘째, 수성구 관광자원의 온라인 출현도는 어떠한가? 셋째, 높은 온라인 출현도를 보이는 관광자원의 뉴스 기사와 댓글은 어떤 내용이 주를 이루는가?이며 그 결과를 보면 첫째, 수성구는 검색엔진 최적화 수준이 대구 내부에서 하위권에 속하며 이는 수성구 관광을 언급한 자료들의 온라인 가시성이 미약한 수준임을 알 수 있다. 둘째, 수성구에서 온라인 출현도가 높은 관광자원들은 대부분 수성못 중심이다. 셋째, 수성못 언론 보도의 내용과 댓글을 살펴본 결과 수성못 교통문제와 열대야가 최대 관심사로 나타나, 관광기반시설에 대한 접근성 개선과 관광자원 개발이 요구된다. 이러한 분석결과는 수성구 관광자원 관련 정책의 개발 및 서비스 운영에 기여 할 수 있고 지역 경제에 대한 해답이 될 것이다.
현재 온라인 뉴스 서비스는 선정적인 연성뉴스 중심으로 제공된다. 이에 따라 저널리즘 가치를 구현한 뉴스 서비스의 필요성이 대두되고 있다. 정보원과 공동 인용 여부에 따라 기사를 클러스터링하고 가중치를 부여해 사실성, 다양성, 심층성, 비판성 등 주요 저널리즘 가치를 구현한 알고리즘은 뉴스정보원연결망분석(news source network analysis)으로 제안된 바 있다. 본 연구는 이를 사용자 친화적으로 시각화한 서비스인 뉴스소스를 제안한다. 뉴스소스는 시간과 정보원에 따라 뉴스를 막대그래프 형식으로 어떤 토픽에 대해 분야별, 소속별로 얼마만큼의 중요도에 따라 논의되는지를 대조적으로 보여준다. 본 연구에서는 뉴스 아카이브인 카인즈의 기사를 활용해 뉴스소스의 베타 버전을 구현했다. (http://147.47.125.161/NSNA/ 에서 베타서비스 중이며, 구글 크롬에 최적화 되어있음)
이 연구는 2006년부터 2015년까지 최근 10년간 뉴스 보도를 다룬 국내 학술 논문의 주제어에 대한 연결망을 통해 연구의 흐름과 경향을 살펴보았다. 총 1,108편의 논문에 제시된 4,410건의 주제어 연결망 분석을 실시한 결과, 국내 언론 보도를 다룬 연구에서 프레임, 의제설정, 제삼자효과, 선택적노출, 이용과충족 등이 주요 이론으로 다뤄진 것으로 나타났다. 이중 프레임에 대한 연구가 압도적으로 많았다. 연구영역으로는 정치, 경제, 과학보도, 국제뉴스 및 관광 등을 다루었으나, 문화, 스포츠 및 생활뉴스 등의 분야에 대한 연구는 나타나지 않았다. 매체별로는 전통매체와 새로운 매체에 대한 연구가 모두 활발하게 이뤄졌다. 특히 방송뉴스와 온라인뉴스 및 소셜미디어에 대한 연구가 빈번하게 나타났다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.