Stress adversely affects the wellbeing of commercial chickens, and comes with an economic cost to the industry that cannot be ignored. In this paper, we first develop an inexpensive and non-invasive, automatic online-monitoring prototype that uses sound data to notify producers of a stressful situation in a commercial poultry facility. The proposed system is structured hierarchically with three binary-classifier support vector machines. First, it selects an optimal acoustic feature subset from the sound emitted by the laying hens. The detection and classification module detects the stress from changes in the sound and classifies it into subsidiary sound types, such as physical stress from changes in temperature, and mental stress from fear. Finally, an experimental evaluation was performed using real sound data from an audio-surveillance system. The accuracy in detecting stress approached 96.2%, and the classification model was validated, confirming that the average classification accuracy was 96.7%, and that its recall and precision measures were satisfactory.
In this paper, we present an effective method and a system for the music summarization which automatically extract the chorus portion of a piece of music. A music summary technology is very useful for browsing a song or generating a sample music for an online music service. To develop the solution, conventional automatic music summarization methods use a 2-dimensional similarity matrix, statistical models, or clustering techniques. But our proposed method extracts the music summary by calculating BER(Bit Error Rate) between audio fingerprint blocks which are extracted from a song. But we could directly use an enormous audio fingerprint database which was already saved for a music retrieval solution. This shows the possibility of developing a various of new algorithms and solutions using the audio fingerprint database. In addition, experiments show that the proposed method captures the chorus of a song more effectively than a conventional method.
Cho, Sung-Ho;Huan, Le Ngoc;Choi, Sun;Kim, Tae-Jung;Shin, Wu-Hyun;Hwang, Heon
Journal of Biosystems Engineering
/
v.39
no.3
/
pp.174-183
/
2014
Purpose: A robust, efficient auto-grading computer vision system for meat carcasses is in high demand by researchers all over the world. In this paper, we discuss our study, in which we developed a system to speed up line processing and provide reliable results for pork grading, comparing the results of our algorithms with visual human subjectivity measurements. Methods: We differentiated fat and lean using an entropic correlation algorithm. We also developed a self-designed robust segmentation algorithm that successfully segmented several porkcut samples; this algorithm can help to eliminate the current issues associated with autothresholding. Results: In this study, we carefully considered the key step of autoextracting lean tissue. We introduced a self-proposed scheme and implemented it in over 200 pork-cut samples. The accuracy and computation time were acceptable, showing excellent potential for use in online commercial systems. Conclusions: This paper summarizes the main results reported in recent application studies, which include modifying and smoothing the lean area of pork-cut sections of commercial fresh pork by human experts for an auto-grading process. The developed algorithms were implemented in a prototype mobile processing unit, which can be implemented at the pork processing site.
Journal of the Korea Society of Computer and Information
/
v.14
no.6
/
pp.99-106
/
2009
Over recent decades, concept mapping has been used as a valuable Learning and Teaching tool. A number of studies have shown a positive impact on student learning. One of the disadvantages of this technique has been that assessing them or providing feedback to students is time consuming. We aim here to introduce ways of reducing the complexity of using concept map techniques in online activities. Several types of scoring methods for the concept map based assessment have been developed. In this paper, we describe the development of an automatic assessment system that implements those techniques. We contribute a design that uses semantic web technologies for both the management and the scoring of the concept maps.
Conversational AI which allows users to interact with satisfaction is a long-standing research topic. To develop conversational AI, it is necessary to build training data that reflects real conversations between people, but current Korean datasets are not in question-answer format or use honorifics, making it difficult for users to feel closeness. In this paper, we propose a conversation dataset (KOMUChat) consisting of 30,767 question-answer sentence pairs collected from online communities. The question-answer pairs were collected from post titles and first comments of love and relationship counsel boards used by men and women. In addition, we removed abuse records through automatic and manual cleansing to build high quality dataset. To verify the validity of KOMUChat, we compared and analyzed the result of generative language model learning KOMUChat and benchmark dataset. The results showed that our dataset outperformed the benchmark dataset in terms of answer appropriateness, user satisfaction, and fulfillment of conversational AI goals. The dataset is the largest open-source single turn text data presented so far and it has the significance of building a more friendly Korean dataset by reflecting the text styles of the online community.
Journal of the Korea Academia-Industrial cooperation Society
/
v.21
no.9
/
pp.662-671
/
2020
It is crucial to manage and maintain the geodetic reference coordinates of GNSS continuously operating reference stations (CORSs) in consideration of their fundamental roles in geodetic control and positioning navigation infrastructure. Earthquake-induced crustal displacement directly impacts the reference coordinates, so such events should be promptly detected, and appropriate action should be made to maintain the target accuracy, including update of the geodetic coordinates. To this end, this paper deals with online schemes for the detection of persistent shifts in the coordinate time-series produced by an automatic GNSS processing system. Algorithms were implemented to test filtered results, such as hypothesis tests of the innovation sequence of a Kalman filter and a cumulative sum (CUSUM) test. The results were assessed by the time-series of coordinates of 14 CORS for two years, including the 2011 Tohoku earthquake. The results show that the global hypothesis test is practical for detecting abrupt jumps, whereas CUSUM is effective for identifying persistent shifts.
Journal of Korean Library and Information Science Society
/
v.21
/
pp.253-289
/
1994
The purpose of this study is about the search pattern of LINNET (Library Information Network System) OPAC users by transaction log, maintained by POSTECH(Pohang University of Science and Technology) Central Library, to provide feedback information of OPAC system design. The results of this study are as follows. First, for the period of this analysis, there were totally 11, 218 log-ins, 40, 627 transaction logs and 3.62 retrievals per a log-in. Title keyword was the most frequently used, but accession number, bibliographic control number or call number was very infrequently used. Second, 47.02% of OPAC, searches resulted in zero retrievals. Bibliographic control number was the least successful search. User displayed 2.01% full information and 64.27% local information per full information. Third, special or advanced retrieval features are very infrequently used. Only 22.67% of the searches used right truncation and 0.71% used the qualifier. Only 1 boolean operator was used in every 22 retrievals. The most frequently used operator is 'and (&)' with title keywords. But 'bibliographical control number (N) and accessionnumber (R) are not used at all with any operators. The causes of search failure are as follows. 1. The item was not used in the database. (15, 764 times : 79.42%). 2. The wrong search key was used. (3, 761 times : 18.95%) 3. The senseless string (garbage) was entered. (324 times : 1.63%) On the basis of these results, some recommendations are suggested to improve the search success rate as follows. First, a n.0, ppropriate user education and online help function let users retrieve LINNET OPAC more efficiently. Second, several corrections of retrieval software will decrease the search failure rate. Third, system offers right truncation by default to every search term. This methods will increase success rate but should considered carefully. By a n.0, pplying this method, the number of hit can be overnumbered, and system overhead can be occurred. Fourth, system offers special boolean operator by default to every keyword retrieval when user enters more than two words at a time. Fifth, system assists searchers to overcome the wrong typing of selecting key by automatic korean/english mode change.
There have been many developments and innovations in the educational environments in line with the rapidly evolving information age. E-Learning is a representative example of this rapid evolution. However, E-Learning is challenging to maintain students' concentration because of the low engagement level and limited interactions between instructors and students. Additionally, instructors have limitations in identifying learners' concentration. This paper proposes a system that can measure E-learning users' concentration levels by detecting the users' eyelid movement and the top of the head. The system recognizes the eyelid and the top of the head and measures the learners' concentration level. Detection of the eyelid and the top of the head triggers an event to assess the learners' concentration level based on the users' response. After this process, the system provides a normalized concentration score to the instructor. Experiments with experimental groups and control groups were conducted to verify and validate the system, and the concentration score showed more than 90% accuracy.
Journal of the Korean Society for information Management
/
v.23
no.2
/
pp.167-183
/
2006
This paper describes a metadata extraction technique based on natural language processing (NLP) which extracts personalized information from email communications between financial analysts and their clients. Personalized means connecting users with content in a personally meaningful way to create, grow, and retain online relationships. Personalization often results in the creation of user profiles that store individuals' preferences regarding goods or services offered by various e-commerce merchants. We developed an automatic metadata extraction system designed to process textual data such as emails, discussion group postings, or chat group transcriptions. The focus of this paper is the recognition of emotional contents such as mood and urgency, which are embedded in the business communications, as metadata.
In this paper, we purpose automatic diagnosis in online, as the fundamental study to diagnose the partial discharge mechanism and to predict the lifetime, by introduction a neural network. In the proposed method, Ire use acoustic emission sensing system and calculate a fixed quantity statistic operator by pulse number and amplitude. Using statically operators such as the center of gravity(G) and the gradient of the discharge distribute(C), we analyzed the early stage and the middle stage. the fixed quantity statistic operators are learned by a neural network. The diagnosis of insulation degradation and a lifetime prediction by the early stage time are achieved. On the basis of revealed excellent diagnosis ability through the neural network learning for the patterns during degradation, it was proved that the neural network is appropriate for degradation diagnosis and lifetime prediction in partial discharge.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.