• Title/Summary/Keyword: one-class support vector machines

Search Result 24, Processing Time 0.031 seconds

Solving Multi-class Problem using Support Vector Machines (Support Vector Machines을 이용한 다중 클래스 문제 해결)

  • Ko, Jae-Pil
    • Journal of KIISE:Software and Applications
    • /
    • v.32 no.12
    • /
    • pp.1260-1270
    • /
    • 2005
  • Support Vector Machines (SVM) is well known for a representative learner as one of the kernel methods. SVM which is based on the statistical learning theory shows good generalization performance and has been applied to various pattern recognition problems. However, SVM is basically to deal with a two-class classification problem, so we cannot solve directly a multi-class problem with a binary SVM. One-Per-Class (OPC) and All-Pairs have been applied to solve the face recognition problem, which is one of the multi-class problems, with SVM. The two methods above are ones of the output coding methods, a general approach for solving multi-class problem with multiple binary classifiers, which decomposes a complex multi-class problem into a set of binary problems and then reconstructs the outputs of binary classifiers for each binary problem. In this paper, we introduce the output coding methods as an approach for extending binary SVM to multi-class SVM and propose new output coding schemes based on the Error-Correcting Output Codes (ECOC) which is a dominant theoretical foundation of the output coding methods. From the experiment on the face recognition, we give empirical results on the properties of output coding methods including our proposed ones.

Creating Level Set Trees Using One-Class Support Vector Machines (One-Class 서포트 벡터 머신을 이용한 레벨 셋 트리 생성)

  • Lee, Gyemin
    • Journal of KIISE
    • /
    • v.42 no.1
    • /
    • pp.86-92
    • /
    • 2015
  • A level set tree provides a useful representation of a multidimensional density function. Visualizing the data structure as a tree offers many advantages for data analysis and clustering. In this paper, we present a level set tree estimation algorithm for use with a set of data points. The proposed algorithm creates a level set tree from a family of level sets estimated over a whole range of levels from zero to infinity. Instead of estimating density function then thresholding, we directly estimate the density level sets using one-class support vector machines (OC-SVMs). The level set estimation is facilitated by the OC-SVM solution path algorithm. We demonstrate the proposed level set tree algorithm on benchmark data sets.

Early warning of hazard for pipelines by acoustic recognition using principal component analysis and one-class support vector machines

  • Wan, Chunfeng;Mita, Akira
    • Smart Structures and Systems
    • /
    • v.6 no.4
    • /
    • pp.405-421
    • /
    • 2010
  • This paper proposes a method for early warning of hazard for pipelines. Many pipelines transport dangerous contents so that any damage incurred might lead to catastrophic consequences. However, most of these damages are usually a result of surrounding third-party activities, mainly the constructions. In order to prevent accidents and disasters, detection of potential hazards from third-party activities is indispensable. This paper focuses on recognizing the running of construction machines because they indicate the activity of the constructions. Acoustic information is applied for the recognition and a novel pipeline monitoring approach is proposed. Principal Component Analysis (PCA) is applied. The obtained Eigenvalues are regarded as the special signature and thus used for building feature vectors. One-class Support Vector Machine (SVM) is used for the classifier. The denoising ability of PCA can make it robust to noise interference, while the powerful classifying ability of SVM can provide good recognition results. Some related issues such as standardization are also studied and discussed. On-site experiments are conducted and results prove the effectiveness of the proposed early warning method. Thus the possible hazards can be prevented and the integrity of pipelines can be ensured.

Fault Diagnosis of Rotating Machinery Based on Multi-Class Support Vector Machines

  • Yang Bo-Suk;Han Tian;Hwang Won-Woo
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.3
    • /
    • pp.846-859
    • /
    • 2005
  • Support vector machines (SVMs) have become one of the most popular approaches to learning from examples and have many potential applications in science and engineering. However, their applications in fault diagnosis of rotating machinery are rather limited. Most of the published papers focus on some special fault diagnoses. This study covers the overall diagnosis procedures on most of the faults experienced in rotating machinery and examines the performance of different SVMs strategies. The excellent characteristics of SVMs are demonstrated by comparing the results obtained by artificial neural networks (ANNs) using vibration signals of a fault simulator.

Effective Fingerprint Classification using Subsumed One-Vs-All Support Vector Machines and Naive Bayes Classifiers (포섭구조 일대다 지지벡터기계와 Naive Bayes 분류기를 이용한 효과적인 지문분류)

  • Hong, Jin-Hyuk;Min, Jun-Ki;Cho, Ung-Keun;Cho, Sung-Bae
    • Journal of KIISE:Software and Applications
    • /
    • v.33 no.10
    • /
    • pp.886-895
    • /
    • 2006
  • Fingerprint classification reduces the number of matches required in automated fingerprint identification systems by categorizing fingerprints into a predefined class. Support vector machines (SVMs), widely used in pattern classification, have produced a high accuracy rate when performing fingerprint classification. In order to effectively apply SVMs to multi-class fingerprint classification systems, we propose a novel method in which SVMs are generated with the one-vs-all (OVA) scheme and dynamically ordered with $na{\ddot{i}}ve$ Bayes classifiers. More specifically, it uses representative fingerprint features such as the FingerCode, singularities and pseudo ridges to train the OVA SVMs and $na{\ddot{i}}ve$ Bayes classifiers. The proposed method has been validated on the NIST-4 database and produced a classification accuracy of 90.8% for 5-class classification. Especially, it has effectively managed tie problems usually occurred in applying OVA SVMs to multi-class classification.

Word Sense Classification Using Support Vector Machines (지지벡터기계를 이용한 단어 의미 분류)

  • Park, Jun Hyeok;Lee, Songwook
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.5 no.11
    • /
    • pp.563-568
    • /
    • 2016
  • The word sense disambiguation problem is to find the correct sense of an ambiguous word having multiple senses in a dictionary in a sentence. We regard this problem as a multi-class classification problem and classify the ambiguous word by using Support Vector Machines. Context words of the ambiguous word, which are extracted from Sejong sense tagged corpus, are represented to two kinds of vector space. One vector space is composed of context words vectors having binary weights. The other vector space has vectors where the context words are mapped by word embedding model. After experiments, we acquired accuracy of 87.0% with context word vectors and 86.0% with word embedding model.

Multi-Class SVM+MTL for the Prediction of Corporate Credit Rating with Structured Data

  • Ren, Gang;Hong, Taeho;Park, YoungKi
    • Asia pacific journal of information systems
    • /
    • v.25 no.3
    • /
    • pp.579-596
    • /
    • 2015
  • Many studies have focused on the prediction of corporate credit rating using various data mining techniques. One of the most frequently used algorithms is support vector machines (SVM), and recently, novel techniques such as SVM+ and SVM+MTL have emerged. This paper intends to show the applicability of such new techniques to multi-classification and corporate credit rating and compare them with conventional SVM regarding prediction performance. We solve multi-class SVM+ and SVM+MTL problems by constructing several binary classifiers. Furthermore, to demonstrate the robustness and outstanding performance of SVM+MTL algorithm over other techniques, we utilized four typical multi-class processing methods in our experiments. The results show that SVM+MTL outperforms both conventional SVM and novel SVM+ in predicting corporate credit rating. This study contributes to the literature by showing the applicability of new techniques such as SVM+ and SVM+MTL and the outperformance of SVM+MTL over conventional techniques. Thus, this study enriches solving techniques for addressing multi-class problems such as corporate credit rating prediction.

Sentiment Analysis System Using Stanford Sentiment Treebank (스탠포드 감성 트리 말뭉치를 이용한 감성 분류 시스템)

  • Lee, Songwook
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.3
    • /
    • pp.274-279
    • /
    • 2015
  • The main goal of this research is to build a sentiment analysis system which automatically determines user opinions of the Stanford Sentiment Treebank in terms of three sentiments such as positive, negative, and neutral. Firstly, sentiment sentences are POS tagged and parsed to dependency structures. All nodes of the Treebank and their polarities are automatically extracted from the Treebank. We train two Support Vector Machines models. One is for a node level classification and the other is for a sentence level. We have tried various type of features such as word lexicons, POS tags, Sentiment lexicons, head-modifier relations, and sibling relations. Though we acquired 74.2% in accuracy on the test set for 3 class node level classification and 67.0% for 3 class sentence level classification, our experimental results for 2 class classification are comparable to those of the state of art system using the same corpus.

False Alarm Minimization Technology using SVM in Intrusion Prevention System (SVM을 이용한 침입방지시스템 오경보 최소화 기법)

  • Kim Gill-Han;Lee Hyung-Woo
    • Journal of Internet Computing and Services
    • /
    • v.7 no.3
    • /
    • pp.119-132
    • /
    • 2006
  • The network based security techniques well-known until now have week points to be passive in attacks and susceptible to roundabout attacks so that the misuse detection based intrusion prevention system which enables positive correspondence to the attacks of inline mode are used widely. But because the Misuse detection based Intrusion prevention system is proportional to the detection rules, it causes excessive false alarm and is linked to wrong correspondence which prevents the regular network flow and is insufficient to detect transformed attacks, This study suggests an Intrusion prevention system which uses Support Vector machines(hereinafter referred to as SVM) as one of rule based Intrusion prevention system and Anomaly System in order to supplement these problems, When this compared with existing intrusion prevention system, show performance result that improve about 20% and could through intrusion prevention system that propose false positive minimize and know that can detect effectively about new variant attack.

  • PDF

Multiple Faults Diagnosis in Induction Motors Using Two-Dimension Representation of Vibration Signals (진동 신호의 2차원 변환을 통한 유도 전동기 다중 결함 진단)

  • Jeong, In-Kyu;Kang, Myeongsu;Jang, Won-Chul;Kim, Jong-Myon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2013.10a
    • /
    • pp.338-345
    • /
    • 2013
  • Induction motors play an increasing importance in industrial manufacturing. Therefore, the state monitoring systems also have been considering as the key in dealing with their negative effect by absorbing faulty symptoms in motors. There are numerous proposed systems in literature, in which, several kinds of signals are utilized as the input. To solve the multiple faults problem of induction motors, like the proposed system, the vibration signals is good candidate. In this study, a new signal processing scheme was utilized, which transforms the time domain vibration signal into the spatial domain as an image. Then the spatial features of converted image then have been extracted by applying the dominant neighbourhood structure (DNS) algorithm. In addition, these feature vectors were evaluated to obtain the fruitful dimensions, which support to discriminate between states of motors. Because of reliability, the conventional one-against-all (OAA) multi-class support vector machines (MCSVM) have been utilized in the proposed system as classifier module. Even though examined in severity levels of signal-to-noise ratio (SNR), up to 15dB, the proposed system still reliable in term of two criteria: true positive (TF) and false positive (FP). Furthermore, it also offers better performance than five state-of-the-art systems.

  • PDF