• Title/Summary/Keyword: one-ampere conductor method

Search Result 3, Processing Time 0.015 seconds

One-Ampere Conductor Method for Tubular Linear Induction Motor for Size Reduction of Primary Iron Core

  • Lee, Byeong-Hwa;Kim, Kyu-Seob;Kwon, Soon-O;Sun, Tao;Hong, Jung-Pyo;Lee, Jung-Ho
    • Journal of Magnetics
    • /
    • v.16 no.1
    • /
    • pp.46-50
    • /
    • 2011
  • This paper presents size reduction of primary iron core for tubular linear induction motor by improved winding configuration. Using one-ampere conductor method, magnetic field analysis of tubular linear induction motor for size reduction is conducted. Size reduction and improvement of air gap flux distribution is achieved by improved winding configuration, and analysis results are verified by finite element analysis (FEA) and experiments.

A Study on the Improved Winding Method in Tubular Linear Induction Motor (TLIM의 권선밥법 개선의 관한 연구)

  • 임달호;홍정표
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.43 no.6
    • /
    • pp.885-895
    • /
    • 1994
  • In this paper, we propose the one-Ampere conductor method which is able to calculate the flux distribution conceptually and easily, and the improved winding method which suppresses space harmonics of magnetormotive force and enhances the coefficient of utilization of primary iron core in tubular linear induction motor. We carry out no-load test to verify effectiveness of proposed method and analyze characteristics by finite element method. As a result, performances are improved and propriety of primary iron core is enhanced comparing with conventional model.

  • PDF

A Study on the improved winding method in Tubular Linear Induction Motor (TLIM의 권선방법 개선에 관한 연구)

  • Im, D.H.;Hong, J.P.;Kim, Y.W.
    • Proceedings of the KIEE Conference
    • /
    • 1993.11a
    • /
    • pp.70-72
    • /
    • 1993
  • In this paper, we propose the One-Ampere Conductor Method which is able to calculate the flux distribution conventionally and easily, and the improved winding method which suppress space harmonics of magnetomotive force and enhance the utilization of primary iron core in tubular linear induction motor. We examine no-load test to verify propriety of proposed method and analyze characteristics by finite element method. As a result, performances are improved and propriety of primary iron core is enhanced comparing with conventional model.

  • PDF