• 제목/요약/키워드: one step finite element approach

검색결과 19건 처리시간 0.027초

One-Step 유한요소법을 이용한 차체판넬 성형해석에 관한 연구 (Study of Forming Analyzing Auto-body panel by Using One-step Finite Element Method)

  • 정동원;이찬호
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2006년도 춘계학술대회 논문집
    • /
    • pp.261-264
    • /
    • 2006
  • Many process parameters have an effect on the auto-body panel forming process. A well-designed blank shape causes the material to flow smoothly, reduces the punch and yields a product with uniform thickness distribution. Therefore, the determination of an initial blank shape plays the important role of saving time and cost in the auto-body panel forming process. For these reasons, some approaches to estimate the initial blank shape have been implemented in this paper, the one-step approach by using a finite element inverse method will be introduced to predict the initial blank shape the developed program is applied to auto-body panel forming.

  • PDF

One-Step 유한요소법에 관한 연구 (A Study of One-Step Finite element method)

  • 안현길;이찬호;문원섭;고창성;정동원
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2005년도 추계학술대회 논문집
    • /
    • pp.414-417
    • /
    • 2005
  • Many process parameters have an effect on the auto-body panel forming process. A well-designed blank shape causes the material to flow smoothly, reduces the punch and yields a product with uniform thickness distribution. Therefore, the determination of an initial blank shape plays the important role of saving time and cost in the auto-body panel forming process. For these reasons, some approaches to estimate the initial blank shape have been implemented in this paper, the one-step approach by using a finite element inverse method will be introduced to predict the initial blank shape the developed program is applied to auto-body panel forming.

  • PDF

A fast damage detecting technique for indeterminate trusses

  • Naderi, Arash;Sohrabi, Mohammad Reza;Ghasemi, Mohammad Reza;Dizangian, Babak
    • Structural Engineering and Mechanics
    • /
    • 제75권5호
    • /
    • pp.585-594
    • /
    • 2020
  • Detecting the damage of indeterminate trusses is of major importance in the literature. This paper proposes a quick approach in this regard, utilizing a precise mathematical approach based on Finite Element Method. Different to a general two-step method defined in the literature essentially based on optimization approach, this method consists of three steps including Damage-Suspected Element Identification step, Imminent Damaged Element Identification step, and finally, Damage Severity Detection step and does not need any optimizing algorithm. The first step focuses on the identification of damage-suspected elements using an index based on modal residual force vector. In the second step, imminent damage elements are identified among the damage-suspected elements detected in the previous step using a specific technique. Ultimately, in the third step, a novel relation is derived to calculate the damage severity of each imminent damaged element. To show the efficiency and quick function of the proposed method, three examples including a 25-bar planar truss, a 31-bar planar truss, and a 52-bar space truss are studied; results of which indicate that the method is innovatively capable of suitably detecting, for indeterminate trusses, not only damaged elements but also their individual damage severity by carrying out solely one analysis.

One-Step Forming을 이용한 박판성형 해석에 관한 연구 (Numerical Study on Sheet Metal Forming Analysis Using the One-Step Forming)

  • 안현길;고형훈;이찬호;안병일;문원섭;정동원
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.419-422
    • /
    • 2005
  • Many process parameters have an effect on the auto-body panel forming process. A well-designed blank shape causes the material to flow smoothly, reduces the punch and yields a product with uniform thickness distribution. Therefore, the determination of an initial blank shape plays the important role of saving time and cost in the auto-body panel forming process. For these reasons, some approaches to estimate the initial blank shape have been implemented in this paper, the one-step approach by using a finite element inverse method will be introduced to predict the initial blank shape the developed program is applied to auto-body panel forming.

  • PDF

One-Step 이론을 이용한 차체판넬 성형 해석에 관한 연구 (Study of Forming Analysis Auto-body Panel Using One-step Theory)

  • 안현길;고형훈;이찬호;안병일;문원섭;정동원
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.585-588
    • /
    • 2005
  • Many process parameters have an effect on the auto-body panel forming process. A well designed blank shape causes the material to flow smoothly, reduces the punch and yields a product with uniform thickness distribution. Therefore, the determination of an initial blank shape plays the important role of saving time and cost in the auto-body panel forming process. For these reasons, some approaches to estimate the initial blank shape have been implemented, in this paper The one-step approach using a finite element inverse method will be introduced to predict the optimal forming with changing of blank pressure the developed program is applied to auto-body panel forming.

  • PDF

직접 격자 사상법을 이용한 직사각컵 및 S-Rail 성형공정의 3차원 유한요소 역해석 (Three Dimensional Finite Element Inverse Analysis of Rectangular Cup and S-Rail Forming Processes using a Direct Mesh Mapping Method)

  • 김승호;허훈
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2001년도 추계학술대회 논문집
    • /
    • pp.81-84
    • /
    • 2001
  • An inverse finite element approach is employed for more capability to design the optimum blank shape from the desired final shape with small amount of computation time and effort. In some drawing or stamping simulation with inverse method, it is difficult to apply inverse scheme due to the large aspect ratio or steep vertical angle of inclination. The reason is that initial guesses are hard to make out with present method for those cases. In this paper, a direct mesh marring scheme to generate initial guess on the sliding constraint surface described by finite element patches is suggested for one step inverse analysis to calculate initial blank shape. Radial type mapping is adopted for the simulation of rectangular cup drawing process with large aspect ratio and parallel type mapping for the simulation of S-Rail forming process with steep vertical angle of inclination.

  • PDF

박판성형해석을 위한 자동 프리에지 제거에 관한 연구 (A Study on the Automatic Elimination of Free Edge for Sheet Metal Forming Analysis)

  • 유동진
    • 소성∙가공
    • /
    • 제13권7호
    • /
    • pp.614-622
    • /
    • 2004
  • A new approach for the automatic elimination of free edges in the finite element model for the analysis of sheet metal forming processes is presented. In general, the raw finite element model constructed from an automatic mesh generator is not well suited for the direct use in the downstream forming analysis due to the many free edges which requires tedious time consuming interactive graphic operations of the users. In the present study, a general method for the automatic elimination of free edges is proposed by introducing a CAD/CAE hybrid method. In the method a trimmed parametric surface is generated to fill the holes which are orginated from the free edges by using the one step elastic finite element analysis. In addition, mesh generation algorithm is suggested which can be used in the general trimmed surface. In order to verify the validity of the proposed method, various examples including actual automobile sheet metal parts are given and discussed.

실험에 적합한 직교 배열표의 자동 생성 및 2 단계 구조 최적화에의 적용 (Automatic Generation of Orthogonal Arrays and Its Application to a Two-Step Structural Optimization)

  • 이수범;곽병만
    • 대한기계학회논문집A
    • /
    • 제27권12호
    • /
    • pp.2047-2054
    • /
    • 2003
  • In this paper, an approach of automatically finding and modifying the most appropriate orthogonal array (GO) is suggested and applied to a new structural optimization procedure with two steps. GO is motivated by the situation where finding a proper orthogonal array from the tables in the literature is difficult or impossible. Now the Taguchi method is made available for various numbers of variables and levels. In the two-step structural optimization, the Taguchi method equipped with GO and a shape optimization using the finite differencing method is consecutively applied. The existence or non-existence of an element can be taken as a factor level and this feature is utilized finding the best topology from a set of potential topologies suggested from the user's expertise. This greatly enhances applicability and one can expect a better result than the case in which each step is applied independently because these steps are complementary each other.

Nonlinear time-varying analysis algorithms for modeling the behavior of complex rigid long-span steel structures during construction processes

  • Tian, Li-Min;Hao, Ji-Ping
    • Steel and Composite Structures
    • /
    • 제18권5호
    • /
    • pp.1197-1214
    • /
    • 2015
  • There is a great difference in mechanical behavior between design model one-time loading and step-by-step construction process. This paper presents practical computational methods for simulating the structural behavior of long-span rigid steel structures during construction processes. It introduces the positioning principle of node rectification for installation which is especially suitable for rigid long-span steel structures. Novel improved nonlinear analytical methods, known as element birth and death of node rectification, are introduced based on several calculating methods, as well as a forward iteration of node rectification method. These methods proposed in this paper can solve the problem of element's 'floating' and can be easily incorporated in commercial finite element software. These proposed methods were eventually implemented in the computer simulation and analysis of the main stadium for the Universiade Sports Center during the construction process. The optimum construction scheme of the structure is determined by the improved algorithm and the computational results matched well with the measured values in the project, thus indicating that the novel nonlinear time-varying analysis approach is effective construction simulation of complex rigid long-span steel structures and provides useful reference for future design and construction.

탄성 몰드 변형을 이용한 은 이온 잉크의 원-스텝 나노스케일 패터닝 (One-Step Nanoscale Patterning of Silver Ionic Ink via Elastic Mold Deformation)

  • 오용석
    • 센서학회지
    • /
    • 제32권4호
    • /
    • pp.252-256
    • /
    • 2023
  • A one-step method for nanoscale patterning of silver ionic ink on a substrate is developed using a microscale, elastic mold deformation. This method yields unique micro/nanoscale metallic structures that differ from those produced using the original molds. The linewidth of these metallic structures is significantly reduced (approximately 10 times) through the sidewall deformation of the original mold cavity on a thin liquid film, as verified by finite element analysis. The process facilitates the fabrication of various, isolated and complex micro/nanoscale metallic structures with negligible residual layers at low cost and high throughput. These structures can be utilized for various applications, including optoelectronics, wearable sensors, and metaverse-related devices. Our approach offers a promising tool for manipulation and fabrication of micro/nanoscale structures of various functional materials.