• Title/Summary/Keyword: one camera

Search Result 1,583, Processing Time 0.026 seconds

Video Content Manipulation Using 3D Analysis for MPEG-4

  • Sull, Sanghoon
    • Journal of Broadcast Engineering
    • /
    • v.2 no.2
    • /
    • pp.125-135
    • /
    • 1997
  • This paper is concerned with realistic mainpulation of content in video sequences. Manipulation of content in video sequences is one of the content-based functionalities for MPEG-4 Visual standard. We present an approach to synthesizing video sequences by using the intermediate outputs of three-dimensional (3D) motion and depth analysis. For concreteness, we focus on video showing 3D motion of an observer relative to a scene containing planar runways (or roads). We first present a simple runway (or road) model. Then, we describe a method of identifying the runway (or road) boundary in the image using the Point of Heading Direction (PHD) which is defined as the image of, the ray along which a camera moves. The 3D motion of the camera is obtained from one of the existing 3D analysis methods. Then, a video sequence containing a runway is manipulated by (i) coloring the scene part above a vanishing line, say blue, to show sky, (ii) filling in the occluded scene parts, and (iii) overlaying the identified runway edges and placing yellow disks in them, simulating lights. Experimental results for a real video sequence are presented.

  • PDF

An Automatic Focusing Method Using Establishment of Step Size from Optical Axis Interval (광학축 간격의 스텝크기 설정을 통한 오토포커싱 방법)

  • Kim, Gyung Bum;Moon, Soon Hwan
    • Journal of the Semiconductor & Display Technology
    • /
    • v.14 no.1
    • /
    • pp.7-11
    • /
    • 2015
  • In this paper, an automatic focusing method has been proposed for speedy and reliable measurement and inspection in industry. It is very difficult to determine focusing step size and moving direction in one camera autofocusing. The proposed method can improve speed and accuracy of focusing by using the optical axis interval of two cameras, which is automatically set up as focusing step size. Also, it can determine moving direction from focus value comparisons of two cameras, and then solve ambiguity of one camera focusing. Its performance is verified by experiments. It is expected that it can apply to optical system for measurement and inspection in industry fields.

Development of multi-line laser vision sensor and welding application (멀티 라인 레이저 비전 센서를 이용한 고속 3차원 계측 및 모델링에 관한 연구)

  • 성기은;이세헌
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.169-172
    • /
    • 2002
  • A vision sensor measure range data using laser light source. This sensor generally use patterned laser which shaped single line. But this vision sensor cannot satisfy new trend which feeds foster and more precise processing. The sensor's sampling rate increases as reduced image processing time. However, the sampling rate can not over 30fps, because a camera has mechanical sampling limit. If we use multi line laser pattern, we will measure multi range data in one image. In the case of using same sampling rate camera, number of 2D range data profile in one second is directly proportional to laser line's number. For example, the vision sensor using 5 laser lines can sample 150 profiles per second in best condition.

  • PDF

The Image Measuring System for accurate calibration-matching in objects (정밀 켈리브레이션 정합을 위한 화상측징계)

  • Kim, Jong-Man
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.357-358
    • /
    • 2006
  • Accurate calibration matching for maladjusted stereo cameras with calibrated pixel distance parameter is presented. The camera calibration is a necessary procedure for stereo vision-based depth computation. Intra and extra parameters should be obtain to determine the relation between image and world coordination through experiment. One difficulty is in camera alignment for parallel installation: placing two CCD arrays in a plane. No effective methods for such alignment have been presented before. Some amount of depth error caused from such non-parallel installation of cameras is inevitable. If the pixel distance parameter which is one of Intra parameter is calibrated with known points, such error can be compensated in some amount and showed the variable experiments for accurate effects.

  • PDF

Depth error calibration of stereo cameras for accurate instrumentation in objects (정밀한 영상 계측을 위한 스테레오 카메라의 오차 보정시스템)

  • Kim, Jong-Man
    • Proceedings of the KIEE Conference
    • /
    • 2004.07d
    • /
    • pp.2313-2316
    • /
    • 2004
  • Accurate calibration effect for maladjusted stereo cameras with calibrated pixel distance parameter is presented. The camera calibration is a necessary procedure for stereo vision-based depth computation. Intra and extra parameters should be obtain to determine the relation between image and world coordination through experiment. One difficulty is in camera alignment for parallel installation: placing two CCD arrays in a plane. No effective methods for such alignment have been presented before. Some amount of depth error caused from such non-parallel installation of cameras is inevitable. If the pixel distance parameter which is one of intra parameter is calibrated with known points, such error can be compensated in some amount and showed the variable experiments for accurate effects.

  • PDF

Lane Detection Using Gaussian Function Based RANSAC (가우시안 함수기반 RANSAC을 이용한 차선검출 기법)

  • Choi, Yeongyu;Seo, Eunyoung;Suk, Soo-Young;Park, Ju H.;Jung, Ho-Youl
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.13 no.4
    • /
    • pp.195-204
    • /
    • 2018
  • Lane keeping assist and departure prevention system are the key functions of ADAS. In this paper, we propose lane detection method which uses Gaussian function based RANSAC. The proposed method consists mainly of IPM (inverse perspective mapping), Canny edge detector, and Gaussian function based RANSAC (Random Sample Consensus). The RANSAC uses Gaussian function to extract the parameters of straight or curved lane. The proposed RANSAC is different from the conventional one, in the following two aspects. One is the selection of sample with different probability depending on the distance between sample and camera. Another is the inlier sample score that assigns higher weights to samples near to camera. Through simulations, we show that the proposed method can achieve good performance in various of environments.

High speed seam tracking system using vision sensor with multi-line laser (다중 레이저 선을 이용한 비전 센서를 통한 고속 용접선 추적 시스템)

  • 성기은;이세헌
    • Proceedings of the KWS Conference
    • /
    • 2002.05a
    • /
    • pp.49-52
    • /
    • 2002
  • A vision sensor measure range data using laser light source, This sensor generally use patterned laser which shaped single line. But this vision sensor cannot satisfy new trend which needs faster and more precise processing. The sensor's sampling rate increases as reduced image processing time. However, the sampling rate can not over 30fps, because a camera has mechanical sampling limit. If we use multi line laser pattern, we will measure multi range data in one image. In the case of using same sampling rate camera, number of 2D range data profile in one second is directly proportional to laser line's number. For example, the vision sensor using 5 laser lines can sample 150 profiles per second in best condition.

  • PDF

High speed seam tracking using multi-line laser vision sensor (멀티 라인 레이저 비전 센서를 이용한 고속 용접선 추적 기술)

  • 성기은;이세헌
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.584-587
    • /
    • 2002
  • A vision sensor measure range data using laser light source. This sensor generally use patterned laser which shaped single line. But this vision sensor cannot satisfy new trend which needs laster and more precise processing. The sensor's sampling rate increases as reduced image processing time. However, the sampling rate can not over 30fps, because a camera has mechanical sampling limit. If we use multi line laser pattern, we will measure multi range data in one image. In the case of using same sampling rate camera, number of 2D range data profile in one second is directly proportional to laser line's number. For example, the vision sensor using 5 laser lines can sample 150 profiles per second in best condition.

  • PDF

Depth error calibration of maladjusted stereo cameras for translation of instrumented image information in dynamic objects (동영상 정보의 계측정보 전송을 위한 비선형 스테레오 카메라의 오차 보정)

  • Kim, Jong-Man;Kim, Yeong-Min;Hwang, Jong-Sun;Lim, Byung-Hyun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.05b
    • /
    • pp.109-114
    • /
    • 2003
  • Depth error correction effect for maladjusted stereo cameras with calibrated pixel distance parameter is presented. The camera calibration is a necessary procedure for stereo vision-based depth computation. Intra and extra parameters should be obtain to determine the relation between image and world coordination through experiment. One difficulty is in camera alignment for parallel installation: placing two CCD arrays in a plane. No effective methods for such alignment have been presented before. Some amount of depth error caused from such non-parallel installation of cameras is inevitable. If the pixel distance parameter which is one of intra parameter is calibrated with known points, such error can be compensated in some amount. Such error compensation effect with the calibrated pixel distance parameter is demonstrated with various experimental results.

  • PDF

Outlier rejection in automobile-mounted NFOV camera (지능화 차량을 위한 오정합점 제거 방법)

  • Suhr, Jae-Kyu;Bea, Kwang-Hyuk;Jung, Ho-Gi;Kim, Jai-Hie
    • Proceedings of the IEEK Conference
    • /
    • 2007.07a
    • /
    • pp.375-376
    • /
    • 2007
  • This paper proposes an algorithm for rejecting mismatched points (known as outliers). The proposed algorithm identifies and rejects outliers in image pairs obtained under automobile-like motions which consist of two translations and one rotation. The camera rotation is approximated to the image shift by assuming that the narrow field of lens is used. The voting method estimates the focus of expansion (FOE) while shifting one of the images. Using the properties of the FOE, the outliers are rejected while most of the inliers are retained.

  • PDF