• Title/Summary/Keyword: omni-directional robot

Search Result 75, Processing Time 0.025 seconds

Redundancy resolution method of omni-directional mobile manipulator system (전방향 이동 머니퓰레이터 시스템의 여유자유도 최적화 방법)

  • Kwon, Soon-Jae;Jeong, Jae-Ung
    • Journal of Power System Engineering
    • /
    • v.19 no.3
    • /
    • pp.75-80
    • /
    • 2015
  • Typically, robot system configured by articulated robot manipulator with 1 DOF transfer unit is being applied in automotive manufacturing automation process. Especially, 1 DOF transfer unit is necessary to extend workspace of robot manipulator. In this configuration, because transfer unit works only one direction, robot manipulator only works in one side in case of car body painting or sealing automation process. it is necessary three robot manipulator system at least. In this paper, in order to robot manipulator works effectively in car body sealing automation application, we are suggested omni-directional manipulator system and conducted studying on redundancy resolution method to solve manipulability-optimal problem.

Collision Avoidance Using Omni Vision SLAM Based on Fisheye Image (어안 이미지 기반의 전방향 영상 SLAM을 이용한 충돌 회피)

  • Choi, Yun Won;Choi, Jeong Won;Im, Sung Gyu;Lee, Suk Gyu
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.3
    • /
    • pp.210-216
    • /
    • 2016
  • This paper presents a novel collision avoidance technique for mobile robots based on omni-directional vision simultaneous localization and mapping (SLAM). This method estimates the avoidance path and speed of a robot from the location of an obstacle, which can be detected using the Lucas-Kanade Optical Flow in images obtained through fish-eye cameras mounted on the robots. The conventional methods suggest avoidance paths by constructing an arbitrary force field around the obstacle found in the complete map obtained through the SLAM. Robots can also avoid obstacles by using the speed command based on the robot modeling and curved movement path of the robot. The recent research has been improved by optimizing the algorithm for the actual robot. However, research related to a robot using omni-directional vision SLAM to acquire around information at once has been comparatively less studied. The robot with the proposed algorithm avoids obstacles according to the estimated avoidance path based on the map obtained through an omni-directional vision SLAM using a fisheye image, and returns to the original path. In particular, it avoids the obstacles with various speed and direction using acceleration components based on motion information obtained by analyzing around the obstacles. The experimental results confirm the reliability of an avoidance algorithm through comparison between position obtained by the proposed algorithm and the real position collected while avoiding the obstacles.

Power System and Drive-Train for Omni-Directional Autonomous Mobile Robots with Multiple Energy Storage Units

  • Ghaderi, Ahmad;Nassiraei, Amir A.F;Sanada, Atsushi;Ishii, Kazuo;Godler, Ivan
    • Journal of Power Electronics
    • /
    • v.8 no.4
    • /
    • pp.291-300
    • /
    • 2008
  • In this paper power system and drive-train for omni-directional autonomous mobile robots with multiple energy storage units are presented. Because in proposed system, which is implemented in soccer robots, the ability of power flow control from of multiple separated energy storage units and speed control for each motor are combined, these robots can be derived by more than one power source. This capability, allow robot to diversify its energy source by employing hybrid power sources. In this research Lithium ion polymer batteries have been used for main and auxiliary energy storage units because of their high power and energy densities. And to protect them against deep discharge, over current and short circuit, a protection circuit was designed. The other parts of our robot power system are DC-DC converters and kicker circuit. The simulation and experimental results show proposed scheme and extracted equations are valid and energy management and speed control can be achieved properly using this method. The filed experiments show robot mobility functions to perform the requested motion is enough and it has a high maneuverability in the field.

Omni-directional Vision SLAM using a Motion Estimation Method based on Fisheye Image (어안 이미지 기반의 움직임 추정 기법을 이용한 전방향 영상 SLAM)

  • Choi, Yun Won;Choi, Jeong Won;Dai, Yanyan;Lee, Suk Gyu
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.8
    • /
    • pp.868-874
    • /
    • 2014
  • This paper proposes a novel mapping algorithm in Omni-directional Vision SLAM based on an obstacle's feature extraction using Lucas-Kanade Optical Flow motion detection and images obtained through fish-eye lenses mounted on robots. Omni-directional image sensors have distortion problems because they use a fish-eye lens or mirror, but it is possible in real time image processing for mobile robots because it measured all information around the robot at one time. In previous Omni-Directional Vision SLAM research, feature points in corrected fisheye images were used but the proposed algorithm corrected only the feature point of the obstacle. We obtained faster processing than previous systems through this process. The core of the proposed algorithm may be summarized as follows: First, we capture instantaneous $360^{\circ}$ panoramic images around a robot through fish-eye lenses which are mounted in the bottom direction. Second, we remove the feature points of the floor surface using a histogram filter, and label the candidates of the obstacle extracted. Third, we estimate the location of obstacles based on motion vectors using LKOF. Finally, it estimates the robot position using an Extended Kalman Filter based on the obstacle position obtained by LKOF and creates a map. We will confirm the reliability of the mapping algorithm using motion estimation based on fisheye images through the comparison between maps obtained using the proposed algorithm and real maps.

Analysis on Regular Rotational Gait of a Quadruped Walking Robot

  • Kim, Whee-Kuk;Whang Cho;Yi, Byung-Ju
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.4 no.2
    • /
    • pp.147-155
    • /
    • 2002
  • In this paper, the regular rotational gaits of the quadruped crawling robot are studied. It is assumed that the proposed regular rotational gaits starts from one of six support patterns in a translational gaits and end up with one of six support patterns in a translational gaits. Noting that six support patterns in a regular translational gait belong to two different groups with respect to regular rotational gait, the static stability margin and the maximum rotational displacement during one rotational stride period for the two representative support patterns are investigated. It is expected that the proposed regular rotational gaits will enhance the omni-directional characteristics of the quadruped crawling robot.

Optimal Path Planning and Control of Omni-directional Autonomous Mobile Robot (전 방향 자율이동로봇의 최적 경로탐색 및 제어)

  • Hwang, Jong-Woo;Lee, Yong-Gu;Lee, Hyunk-Wan;Eom, Ki-Hwan
    • Proceedings of the IEEK Conference
    • /
    • 2006.06a
    • /
    • pp.945-946
    • /
    • 2006
  • There are some difficulties to track an object with one-axis two-wheel drive method. When one-axis two-wheel drive robot wants to approach to the object, it should turn direction of the robot. At this time, direction of camera also would be changed. In this paper, we introduce omni-directional driving system that can move freely without turning the robot body, and propose the optimal approaching method.

  • PDF

EXPERIMENT OF CONCRETE FLOOR FINISHING ROBOT

  • Woo, Kwang-Sik;Lee, Ho-Gil;Kim, Jin-Young;Song, Jae-Bok
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1480-1484
    • /
    • 2004
  • In this paper, a self-propulsive and small concrete floor finishing trowel robot with twin trowels is proposed. Due to the small size and omni-directional moving capability, it is adequate for small space such as apartment. By adjusting the posture of trowels, it can move in any direction without wheels. We used cheap PIC processor for the cost saving design of the modules and adopted mode processors for easy operation of control stick. For the position control of the robot, we made a motion control algorithm appealing to the stepping motor driver module and the wireless communication module between the robot and PC (or control stick). In this paper, we discuss the control problem of the floor finishing robot in order to move to the right position. By comparing experimental result with simulation, we show the validity of the robot mechanism, sensors, and the control system.

  • PDF

Motion Analysis of Omni-directional Self-propulsive Polishing Robot (전방향 자기추진 바닥닦기 로봇의 운동해석)

  • Shin, Dong-Hun;Kim, Ho-Joong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.5 s.98
    • /
    • pp.151-159
    • /
    • 1999
  • A self-propulsive polishing robot is proposed as a method which automates a floor polisher. The proposed robot with two rotary brushes does not require any mechanism such as wheels to obtain driving forces. When the robot polishes a floor with its two brushes rotating, friction forces occur between the two brushes and the floor. These friction forces are used to move the robot. Thus, the robot can move in any direction by controlling the two rotary brushes properly. In this paper, firstly a dynamics model of a brush is presented. It computes the friction force between the brush and the floor. Secondly, the dynamics of the proposed robot is presented by using the bush dynamics. Finally, the inverse dynamics is solved for the basic motions, such as the forward, backward, leftward, rightward motions and the pure rotaion. This paper will contribute to realize a self-propulsive polishing robot as proposed above, In addition, this paper will give basic ideas to automate the concrete floor finishing trowel, because its basic idea for motion is similar to that of the proposed robot.

  • PDF

3D Omni-directional Vision SLAM using a Fisheye Lens Laser Scanner (어안 렌즈와 레이저 스캐너를 이용한 3차원 전방향 영상 SLAM)

  • Choi, Yun Won;Choi, Jeong Won;Lee, Suk Gyu
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.7
    • /
    • pp.634-640
    • /
    • 2015
  • This paper proposes a novel three-dimensional mapping algorithm in Omni-Directional Vision SLAM based on a fisheye image and laser scanner data. The performance of SLAM has been improved by various estimation methods, sensors with multiple functions, or sensor fusion. Conventional 3D SLAM approaches which mainly employed RGB-D cameras to obtain depth information are not suitable for mobile robot applications because RGB-D camera system with multiple cameras have a greater size and slow processing time for the calculation of the depth information for omni-directional images. In this paper, we used a fisheye camera installed facing downwards and a two-dimensional laser scanner separate from the camera at a constant distance. We calculated fusion points from the plane coordinates of obstacles obtained by the information of the two-dimensional laser scanner and the outline of obstacles obtained by the omni-directional image sensor that can acquire surround view at the same time. The effectiveness of the proposed method is confirmed through comparison between maps obtained using the proposed algorithm and real maps.