• Title/Summary/Keyword: omni-directional

Search Result 355, Processing Time 0.03 seconds

Tracking Control of 3-Wheels Omni-Directional Mobile Robot Using Fuzzy Azimuth Estimator (퍼지 방위각 추정기를 이용한 세 개의 전 방향 바퀴 구조의 이동로봇시스템의 개발)

  • Kim, Sang-Dae;Kim, Seung-Woo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.10
    • /
    • pp.3873-3879
    • /
    • 2010
  • Home service robot are not working in the fixed task such as industrial robot, because they are together with human in the same indoor space, but have to do in much more flexible and various environments. Most of them are developed on the base of the wheel-base mobile robot in the same method as a vehicle robot for factory automation. In these days, for holonomic system characteristics, omni-directional wheels are used in the mobile robot. A holonomicrobot, using omni-directional wheels, is capable of driving in any direction. But trajectory control for omni-directional mobile robot is not easy. Especially, azimuth control which sensor uncertainty problem is included is much more difficult. This paper develops trajectory controller of 3-wheels omni-directional mobile robot using fuzzy azimuth estimator. A trajectory controller for an omni-directional mobile robot, which each motor is controlled by an individual PID law to follow the speed command from inverse kinematics, needs a precise sensing data of its azimuth and exact estimation of reference azimuth value. It has imprecision and uncertainty inherent to perception sensors for azimuth. In this paper, they are solved by using fuzzy logic inference which can be used straightforward to perform the control of the mobile robot by means of the fuzzy behavior-based scheme already existent in literature. Finally, the good performance of the developed mobile robot is confirmed through live tests of path control task.

Omni-directional Mobile Robot for 2D Translation and Rotation of a Puppet using Magnet (줄 인형의 2차원 이동 및 회전을 위한 자석기반 전 방향 로봇시스템)

  • Kim, Byeong-Yeol;Han, Young-Jun;Hahn, Hun-Soo
    • The Journal of Korea Robotics Society
    • /
    • v.5 no.4
    • /
    • pp.326-331
    • /
    • 2010
  • Marionette controlling robot has a problem that generates interference in rotation and intersection, therefore, the research on the independent shifter to move freely on the stage is required. Connecting omni-directional mobile robot with marionette controlling robot can solve this problem. Omni-directional mobile robot makes itself rotate and translate in 2D plane freely. Magnetic device is used to connect the moving part with the control part of the robot to minimize the intereference generated by the movement of robot. When robot moves, it can move to all directions with the suitalbe setting of banlance power. The moment of inertia is minimized by dividing the robot to the upper and lower parts in the marionette performance stage. Rotation and interference problem of independent omni-wheel Robot can be solved by using the permanent magnet. The efficiency and safety of the marionette controlling robot is proved by the experiment.

Teleoperation Control of Omni-directional Mobile Robot with Force Feedback (힘 반향 기법을 이용한 전방향 이동 로봇의 원격 제어)

  • Lee, Jeong-Hyeong;Lee, Hyung-Jik;Jung, Seul
    • Proceedings of the KIEE Conference
    • /
    • 2007.04a
    • /
    • pp.243-245
    • /
    • 2007
  • This paper presents the implementation of teleoperation control of an omni-direction mobile robot. The master joystick robot has two degrees of freedom to control the movement of the slave mobile robot in the Cartesian space. In addition, the whole teleoperated control system is closed by the force feedback. The operator can feel the contact force as the slave robot makes contact with the environment. Experimental results show that the teleooerated control with force feedback has been successfully implemented.

  • PDF

Control of an Omni-directional Electric Board using Driver Weight Shift (운전자 체중 이동을 이용한 전방향 전동 보드의 제어)

  • Choi, Yong Joon;Ryoo, Jung Rae
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.4
    • /
    • pp.149-155
    • /
    • 2016
  • This paper presents a control method of a mecanum wheel-based omni-directional electric board using driver weight shift. Instead of a steering device such as a joystick or a remote controller, 3 degree-of-freedom driving command for translational and rotational motion of the omni-directional electric board is generated from position of center of gravity measured from weight distribution. The weight shifting motion is not only a driving command but also an intuitive motion to overcome inertial forces. The overall control structure is presented with experimental results to prove validity of the proposed method.

Global Localization of Mobile Robots Using Omni-directional Images (전방위 영상을 이용한 이동 로봇의 전역 위치 인식)

  • Han, Woo-Sup;Min, Seung-Ki;Roh, Kyung-Shik;Yoon, Suk-June
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.4
    • /
    • pp.517-524
    • /
    • 2007
  • This paper presents a global localization method using circular correlation of an omni-directional image. The localization of a mobile robot, especially in indoor conditions, is a key component in the development of useful service robots. Though stereo vision is widely used for localization, its performance is limited due to computational complexity and its narrow view angle. To compensate for these shortcomings, we utilize a single omni-directional camera which can capture instantaneous $360^{\circ}$ panoramic images around a robot. Nodes around a robot are extracted by the correlation coefficients of CHL (Circular Horizontal Line) between the landmark and the current captured image. After finding possible near nodes, the robot moves to the nearest node based on the correlation values and the positions of these nodes. To accelerate computation, correlation values are calculated based on Fast Fourier Transforms. Experimental results and performance in a real home environment have shown the feasibility of the method.

3D Omni-directional Vision SLAM using a Fisheye Lens Laser Scanner (어안 렌즈와 레이저 스캐너를 이용한 3차원 전방향 영상 SLAM)

  • Choi, Yun Won;Choi, Jeong Won;Lee, Suk Gyu
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.7
    • /
    • pp.634-640
    • /
    • 2015
  • This paper proposes a novel three-dimensional mapping algorithm in Omni-Directional Vision SLAM based on a fisheye image and laser scanner data. The performance of SLAM has been improved by various estimation methods, sensors with multiple functions, or sensor fusion. Conventional 3D SLAM approaches which mainly employed RGB-D cameras to obtain depth information are not suitable for mobile robot applications because RGB-D camera system with multiple cameras have a greater size and slow processing time for the calculation of the depth information for omni-directional images. In this paper, we used a fisheye camera installed facing downwards and a two-dimensional laser scanner separate from the camera at a constant distance. We calculated fusion points from the plane coordinates of obstacles obtained by the information of the two-dimensional laser scanner and the outline of obstacles obtained by the omni-directional image sensor that can acquire surround view at the same time. The effectiveness of the proposed method is confirmed through comparison between maps obtained using the proposed algorithm and real maps.

Design and Control of an Omni-directional Cleaning Robot Based on Landmarks (랜드마크 기반의 전방향 청소로봇 설계 및 제어)

  • Kim, Dong Won;Igor, Yugay;Kang, Eun Seok;Jung, Seul
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.23 no.2
    • /
    • pp.100-106
    • /
    • 2013
  • This paper presents design and control of an 'Omni-directional Cleaning Robot (OdCR)' which employs omni-wheels at three edges of its triangular configuration. Those omni-wheels enable the OdCR to move in any directions so that lateral movement is possible. For OdCR to be localized, a StarGazer sensor is used to provide accurate position and heading angle based on landmarks on the ceiling. In addition to that, ultrasonic sensors are installed to detect obstacles around OdCR's way. Experimental studies are conducted to test the functionality of the system.

Fabrication and Application of BIS Base Station Antenna in Jeon-Ju City (전주시 BIS 기지국용 안테나 제작 및 활용)

  • Ko JinHyun;Park JooMoon;Ha Jaekwon;Park DukKyu
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.3 no.2 s.5
    • /
    • pp.95-104
    • /
    • 2004
  • This paper describes the design, fabrication, and measurement of a omni-directional beam pattern antenna for base station of the BIS which is one of the ITS services. The antenna is installed on the signal lamp of important crossroad and provides the wireless communication link between vehicles and RSE(Road Side Equipment). The required characteristics of BIS base station antenna are omni-directional beam pattern and specific beam pattern by the road and install environment and installed place of OBU. To get omni-directional beam pattern of antenna, Array configuration and OMA are applied. The measured results of fabricated antenna are as follows; return loss of 640MHz by -10 dB, and a gain of 10.3dBi. It is found that the measured beam patterns are similar to design results.

  • PDF