• Title/Summary/Keyword: oil leakage

Search Result 241, Processing Time 0.026 seconds

Fire Safety Assessment Based on FSA and Risk Reduction of Machinery System Considering Functional Safety (기능적 안전을 고려한 FSA기반 기관 구역 화재 안전성 평가 및 개선)

  • Suh, Sung-Won;Yang, Young-Soon;Chung, So-Yeon;Ryu, Won-Sun
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.49 no.3
    • /
    • pp.239-246
    • /
    • 2012
  • It is the well-known fact that most part of goods transported are moved on the unfavorable ocean and even a small amount of accident on sea is extremely dangerous for human lives, financial losses, and social responsibility. Among the several causes of accidents, those by fire have occurred frequently and their damage has been highly serious. The aim of this paper is to assess the risk of fires due to oil leakage in the machinery space. To define the possible fire scenario, our team has performed the search of casualty database and reviewed the previous and various studies in the field. As a result, it is noted that the quantitative risk of the fire scenario have been evaluated on the ground of the FSA risk model. The expected frequency of a fire amounts to incidents during the life of a ship, and the expected financial damage amounts to 5,654 USD per a ship. By adopting Safety Instrumented System (SIS) introduced in IEC 61508 and IEC 61511, SIS model is designed to prevent oil leakage fire as a risk reduction method. It is concluded that System Integrity Level (SIL) 1 seems to be appropriate level of SIS.

Analyses on Solute Transport with the Movement of an LNAPL on the Water Table (지하수면 위의 LNAPL 이동을 고려한 용질이동에 대한 분석)

  • 김지훈;최종근
    • Journal of Soil and Groundwater Environment
    • /
    • v.8 no.3
    • /
    • pp.1-7
    • /
    • 2003
  • A modified model was developed for solute transport in porous media that can consider the movement of an LNAPL above the water table. From the results of sensitivity analyses with and without considering LNAPL movement, there are some differences according to the hydraulic gradient, the quantity of oil leakage and dispersivity. The mean deviation between the model in this study and a conventional model without LNAPL movement increases as the hydraulic gradient decreases and the quantity of oil leakage increases. Variation of dispersivity has no influence on the magnitude of the mean deviation. However, the spatial distribution of the deviation between the two models is wider as dispersivity increases. Furthermore, groundwater is at high risk of contamination in the vertical direction in the case that transverse dispersion value is large. A conventional model underestimates the concentration of solute in an aquifer where the movement of an LNAPL cannot be negligible: Based on the study results, it is important to understand how fast the LNAPL moves on the water table for realistic prediction of solute transport in an aquifer with the movable LNAPL on the water table.

Stress Analysis of the Cylinder Block and the Valve Plate of the Swash Plate Type Oil Hydraulic Piston Pump (사판식 유압 픽스톤 펌프의 실린더블록과 밸브 플레이트의 응력해석)

  • Kim J. H.;Cho I. S.;Baek I. H.;Jung Jae-Youn;Oh Suk-Hyung
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2004.11a
    • /
    • pp.255-260
    • /
    • 2004
  • Recently, the technologies related to the swash plate type oil hydraulic piston pump are requiring extreme technologies to overcome the limit of high efficiency in cope with high speed and pressure, and are devoted to compact the unit, to gain low noise level, and to adopt electronic technologies, and the question regarding to maximize the mechanical efficiency, that is, to minimize the torque loss by minimizing the leakage loss in the relative sliding region but these are in trade-off relation that tribological responding is very difficult. Cylinder block-valve pate in high speed relative sliding motion has the characteristics that should be extremely controlled for the optimization of these leakage loss and mechanical efficiency, and pressure resistance designing of them is important for high pressure performance. But, studies on the stress analysis of these parts have not been performed briskly, so in this paper the stress distribution and the region where the highest displacement appears are described through the static stress analysis using CATIA V5. Through the future studies on these theme, it has the purpose of finding the suitable materials for the other parts as well as cylinder block and valve plate, in cope with high pressure operation through the stress analysis with the most similar conditions for the practical operation.

  • PDF

A Numerical Study on the Leakage of a Liquid from an Underwater Pipe without Pressure Gradient (압력구배가 없는 수중 파이프에서의 액체 오염물 유출에 관한 수치연구)

  • Song Museok;Han Jahoon
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.3 no.2
    • /
    • pp.18-24
    • /
    • 2000
  • A two-dimensional numerical method for inviscid two-fluid flows with a significant entrainment into both directions is established, and the oil leakage from a non-pressurized underwater pipe is studied. The interface between two fluids is modeled at a vortex sheet. The flow field and the subsequent interface evolution are solved by using the vortex-in-cell method. For longer flow simulation with a realistic two fluids interaction, an efficient merging scheme is introduced. In the Boussinesq limit, the speed of the external fluid intrusion into the pipe is very close to the existing mathematical models, and the lock exchange is observed in spite of a significant roll-up of the interface and entrainments. It is believed that the developed method can be utilized effectively for further detailed studies on various two-fluid flows which are encountered in many different marine oil spill problems.

  • PDF

A Study on Structural Safety and Advanced Efficiency for a Drywell Type Reducer (누유방지형 감속기의 구조적 안전성 및 토크효율 향상에 관한 연구)

  • Oh, Sang-Yeob
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.11
    • /
    • pp.1399-1406
    • /
    • 2011
  • The reducer of the mixer is one of the main parts of the processor used for water and wastewater treatment. In this study, an advanced reducer with a drywell structure was developed in order to prevent oil leakage during operation in the field. During the development of the advanced reducer prototype, a mockup, a metal mold, and a cast were made using CAD and a CNC machine. The structural safety of the reducer prototype's lower housing (drywell structure) was checked using the ALGOR commercial FEM analysis code, which yielded a von Mises stress of about 123 N/mm2, which is below the yield stress of 250 N/$mm^2$, and a natural frequency of about 650-700 Hz. In addition, the torque transmission efficiency for the advanced prototype was 95.87%, which is about 8% more than that found in a previous study, 88.45%, and the sound level was below 75 dB. Furthermore, no oil leakage or abnormal sound or vibration occurred. Therefore, an optimally designed advanced reducer prototype has been successfully developed.

Development of Large Propulsion Motor Bearings Considering Slope Conditions (경사조건을 고려한 대용량 추진 전동기용 베어링 개발에 대한 연구)

  • Oh, Seung Tae;Choi, Jin Woo;Kang, Byeng Hi;Kim, Jin;Choi, Seong Pil;Bin, Jae Goo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.2
    • /
    • pp.241-248
    • /
    • 2013
  • In this study, bearings were developed for a high-power propulsion motor operating in inclined operation conditions through a simulation and similitude-experimental methods using commercial rotating machinery dynamics analysis software. The developed journal bearing is electrically insulated and has low thermal conductivity because each part is connected with 2-4 -mm-thick epoxy plates. To realize an appropriate oil thickness, an oil lift system is adopted, and a half separated structure is applied to ensure the feasibility of maintaining very heavy components. This study discusses some of the key design aspects of sleeve bearing design for high-torque and low-speed propulsion motor applications. Furthermore, the conditions of variable slope tests are examined to prevent oil leakage from the bearing lip seal on the test rig.

Analysis of Performance Characteristics of Swash-Plate-Type Hydraulic Piston Motor (사판식 유압 피스톤모터의 성능특성 분석)

  • Lee, Yong-Bum;Kim, Kwang-Min
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.11
    • /
    • pp.1441-1446
    • /
    • 2012
  • An axial-piston-type hydraulic motor involves friction and leakage losses at the sliding parts, contact loss at the mechanism assembly parts, volumetric loss caused by the pressure drop, housing oil churning loss and compressibility from the hydraulic oil pipe resistance, etc. the friction and volumetric loss at the hydrostatic bearing between the piston shoe and the swash plate rotating at high speed and having an oil film gap of 8-15 ${\mu}m$ strongly affects the total efficiency of the hydraulic motor. In this study, a variable swash-plate-type hydraulic piston motor operating under a maximum pressure of 35 MPa, maximum speed of 2,500 rpm, and displacement of 320 cc/rev is tested to verify the optimal ratio of the hydrostatic bearing which is closely related to the hydraulic motor performance.

A Study on the Stress Analysis of Oil Hydraulic Piston Pump with a Swash Plate Type (사판식 유압 피스톤 펌프의 응력해석에 관한 연구)

  • Jeong, Bong-Soo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.4
    • /
    • pp.2424-2429
    • /
    • 2015
  • In an oil hydraulic piston pump, the cylinder block and valve plate in high speed relative sliding motion have the characteristics which should be extremely controlled for the optimization of leakage and friction losses, and pressure-resistance design of them is very important for high pressure performance. But the studies on the stress analysis of those parts have not been performed briskly. Therefore, in this paper, the stress and displacement distributions of the cylinder block and valve plate in the oil hydraulic piston pump with a swash plate type are discussed through the static stress analysis using CATIA V5. The stress and displacement of the cylinder block are more influenced by the axial pressure than by the radial pressure, and are larger by approximately 66% and 30%, respectively. The results show that a review of the material and shape of the valve plate is required.

Problems of Disaster Reporting in Korea - Case of Hebei Spirit Oil Spill in Taean-gun (허베이 스피리트호 기름유출사고를 통해 본 재난보도의 문제점)

  • Park, Dong-Kyun
    • The Journal of the Korea Contents Association
    • /
    • v.9 no.5
    • /
    • pp.241-248
    • /
    • 2009
  • On 7 December 2007, the Hong Kong registered tanker Hebei Spirit, laden with 209,000 tonnes of crude oil, was struck by the crane barge Samsung No 1, whilst at anchor about five miles off Taean on the West Coast in Korea. About 10,500 tonnes of crude oil escaped into the sea from the Hebei Spirit. The recent oil leakage from a tanker in seas off Taean has turned the sea farms and fishing areas on the country's western coast into a sea of oil. Analysts say the spill is considered as one of the world's devastating sea pollution cases involving oil. In our contemporary society where people are exposed to potential dangers in every aspect, no one can be free from such dangers. With an increase in human casualties due to disaster, disaster reporting plays a vital role in preventing and minimizing damages. Despite such enormous significance, however, Korean disaster reporting has not performed effectively. In this contexts, this study analyzed the problems of disaster reporting in Korea, with the case of Hebei Spirit oil Spill in Taean-gun. And, this study suggest the establish ways and means needed to improve the disaster reporting in Korea with the case of Hebei Spirit case.

Oil Storage Tank Inspection using 3D Laser Scanner (3D 레이저스캐너를 활용한 유류 저장탱크의 검사)

  • Park, Joon-Kyu;Lee, Keun-Wang
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.12
    • /
    • pp.867-872
    • /
    • 2020
  • Oil storage tanks are a major structure in chemical industrial complexes. Damage to the structure due to natural disasters or poor management can cause additional damage, such as leakage of chemicals, fire, and explosion, so it is essential to understand the deformation. In this study, data on oil storage tanks were acquired using a 3D laser scanner, and various analyzes were performed for storage tank management by comparing them with design data. Modeling of the oil storage tank was performed using the data and design drawings acquired by a 3D laser scanner. An inspection of the oil storage tank was effectively performed by overlapping. In addition, cross-sectional and exploded views of the deformation were produced to generate visible data on the deformation of the facility, and it was suggested that the oil storage tank had a maximum deformation of -7.16mm through quantitative analysis. Data that can be used for additional work was obtained by producing drawings to be precisely inspected for areas with large deformation. In the future, an inspection of oil storage tanks using 3D laser scanners is quantitative and visible data on oil storage tank deformation. This will greatly improve the efficiency of facility management by rebuilding it.