• 제목/요약/키워드: oil inlet

검색결과 137건 처리시간 0.023초

피스톤 오일 냉각 유로의 성능 검증을 위한 리그 시험기 개발 (Rig Tester Development for the Performance Validation of a Piston Oil Cooling Gallery)

  • 전상명;이정근;주대헌;류관호;하대홍
    • Tribology and Lubricants
    • /
    • 제25권6호
    • /
    • pp.387-398
    • /
    • 2009
  • The operation condition of recently designed pistons for high power and high speed diesel engine become more severe due to the increment of combustion pressure and temperature. So, in order to overcome high temperature, the application of the mono-metal cast aluminum alloy piston featuring an enclosed cast-in open cooling gallery has increased. In this research, it is developed a PCJ (piston cooling jet) rig tester, described the test procedure and validated the performance of sample piston cooling gallery design. Then the test rig will be used for developing the design technology of piston cooling gallery. The test rig is composed with oil reservoir and pumping system, oil jet system, piston fixing and moving system, collecting oil measuring system, and data measuring and recording system. It will be measured collecting efficiencies under conditions of a few piston positions, oil jet pressures and oil viscosities for a piston cooling gallery. Furthermore, the PCJ rig tester will be used for the optimum design of the oil cooling gallery which being applied to increase the cooling efficiency of pistons in diesel engines satisfying the EURO V emission regulation and the more.

유턴 흐름을 갖는 차량공조용 플레이트형 증발기의 전열특성에 관한 연구 (A study on the characteristics of heat transfer and pressure drop in plate type evaporator with U-turn for automotive air conditioner)

  • 강정길;김종수
    • 설비공학논문집
    • /
    • 제11권4호
    • /
    • pp.472-483
    • /
    • 1999
  • The evaporation heat transfer and pressure drop characteristics for HFC-l34a in flat plate type heat exchangers with enhanced beads were experimentally investigated. Three plate type evaporators with different geometric condition of U-turn area were tested. Mass fluxes were tested over the range of 83kg/$m^2$s to 166kg/$m^2$s, and heat fluxes were varied from 4㎾/$m^2$ to 12㎾/$m^2$. Evaporation temperature was 5$^{\circ}C$ with inlet qualities of 0.1 to 1.0. There was no notable difference in the heat transfer coefficient by geometric variation of U-turn area, but the third plate with cross-ribbed channel at U-turn area was better than others in the evaluation using volume goodness factor comparison. Also, the mixtures of HFC-l34a and PAG oil was tested to determine oil effects on heat transfer and pressure drop. As oil concentration was increased, heat transfer coefficient was increased by 22~48% up to the 3wt.%, but decreased by 14~22% at the 4wt.%. The pressure drop was increased by the maximum of 100% as oil concentration was increased.

  • PDF

이단중유연소 버너의 수치해석적 연구 (Flame simulation on the two stage heavy oil combustion)

  • 이승수;김혁주;박병식;김종진;최규성
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2002년도 제25회 KOSCI SYMPOSIUM 논문집
    • /
    • pp.209-214
    • /
    • 2002
  • Computations were performed to investigate the flow, temperature and pollutants in two stage heavy-oil combustion burner. The burner geometry and flow conditions were provided by a burner company. The goal of the study is to understand combustion phenomena according to each air inlet's velocity, excessive air ratio and air temperature through CFD. Air flow rates at two inlets are adjusted by a damper inside a burner. Here, injection conditions of liquid fuel are kept constant throughout all simulations. This assumption is made in order to limit the complexity of oil combustion though it may cause some disagreement. The final goal of this research is to design a Low-NOx heavy oil combustion burner through comparison between computational study and experimental ones. Besides experiments, simulation works can give us insights into heavy oil combustion and help us design a Low NOx burner while saving time and cost. The computational study is based on k-e model, P-1 radiation model(WSGGM) and PDF, and is implemented on a commercial code, FLUENT.

  • PDF

옵셋 스트립 휜 삽입 오일쿨러의 열전달에 관한 실험적 연구 (Experimental Study on Heat Transfer Characteristics of Oil Cooler Inserted Offset Strip Fin)

  • 유정원;박재홍;권용하;김영수;이병길
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 춘계학술대회
    • /
    • pp.1237-1242
    • /
    • 2004
  • In this study, single-phase heat transfer experiments were conducted with oil cooler with offset strip fin using water. An experimental water loop has been developed to measure the single-phase heat transfer coefficient in a vertical oil cooler. Downflow of hot water in one channel receives heal from the cold water upflow of water in the other channel. Similar to the case of a plate heat exchanger, even at a very low Reynolds number, the flow in the on cooler with offset strip fin remains turbulent. The present data show that the heat transfer coefficient increases with the Reynolds number. Based. On the present data, empirical correlation of the heat transfer coefficient was proposed. Also, performance prediction analysis for oil cooler were executed and compared with experiments. ${\varepsilon}-NTU$ method was used in this prediction program. Independent variables are flow rates and inlet temperature. Compared with experimental data, the accuracy of the program is within the error bounds of ${\pm}5$% in the heat transfer rate.

  • PDF

A Study on Flow Characteristics of Polluted Air in Rectangular Tunnel Models Using a PIV System

  • Koh, Young-Ha;Park, Sang-Kyoo;Yang, Hei-Cheon;Lee, Yong-Ho
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제34권6호
    • /
    • pp.825-832
    • /
    • 2010
  • The objective of this study is to investigate flow behaviors of polluted air in order to prevent the impact of disaster in a tunnel. This paper presents the experimental results qualitatively in terms of flow characteristics in two kinds of rectangular tunnel models in which each distance from the centerline above the inlet vent to the exhaust vent is 0 and 60 mm, respectively. The olive oil is used as the tracer particles. The flow is tested at the flow rate of $14.16{\times}10^{-4}\;m^3/s$ and the inlet vent velocity of 1.1 m/s with the kinematic viscosity of air. The aspect ratio of the model test section is 10. The average velocity vectors, streamlines, and vorticity distributions are measured and analyzed by the Flow Manager in a particle image velocimetry(PIV) system. The PIV technology gives three different velocity distributions according to observational points of view for understanding the polluted air flow characteristics. The maximum value of mean velocity generally occurs in the inlet and outlet vent regions in the tunnel models.

Experimental and CFD Simulations of Polluted Air Behavior in Rectangular Tunnels

  • Lee, Yong-Ho
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제35권5호
    • /
    • pp.608-615
    • /
    • 2011
  • The objective of this study is to investigate the flow characteristics of polluted air behavior in rectangular tunnels using a PIV system and a commercial CFD program. The PIV experiments are simulated by using the olive oil as the tracer particles in scaled rectangular tunnels. Each model has one of four different outlet vents, each dimensionless L/H ratio of which is 0, 0.375, 0.75 and 1.125, respectively as the locations of each outlet are away from the vertical centerline through the inlet. A commercial CFD program, ANSYS CFX, was used to examine the velocity fields and the pressure distributions in numerical simulations. The kinematic viscosity of the air flow of $1.51{\times}10^{-5}m^2/s$ and the flow velocity of 0.3 m/s at the inlet are given under the same conditions in order to analyze the polluted air flow characteristics experimentally and computationally. This study is considered to examine the effect of the outlet locations in the naturally ventilated tunnel models.

Numerical Analysis of Centrifugal Impeller for Different Viscous Liquids

  • Bellary, Sayed Ahmed Imran;Samad, Abdus
    • International Journal of Fluid Machinery and Systems
    • /
    • 제8권1호
    • /
    • pp.36-45
    • /
    • 2015
  • Oil and gas industry pumps viscous fluids and investigation of flow physics is important to understand the machine behavior to deliver such fluids. 3D numerical flow simulation and analysis for different viscous fluids at different rotational speeds of a centrifugal impeller have been reported in this paper. Reynolds-averaged Navier Stokes (RANS) equations were solved and the performance analysis was made. Standard two equation k-${\varepsilon}$ model was used for the turbulence closure of steady incompressible flow. An inlet recirculation and reverse flow in impeller passage was observed at low impeller speeds. It was also found that the higher viscosity fluids have higher recirculation which hinders the impeller performance.

스크류 열펌프 시스템의 운전제어 방안에 관한 연구 (A Study on the Operating Control of a Heat Pump System with Screw Compressors)

  • 박준택;이영수;김지영;채규정;양희정
    • 설비공학논문집
    • /
    • 제25권3호
    • /
    • pp.168-172
    • /
    • 2013
  • A preliminary performance test of a 30RT 2-stage screw heat pump was carried out in order to develop a high performance large-scale unutilized energy source heat pump system, which will be used for district heating and cooling. In this study, two issues of the system operating control were investigated. The first issue is the mode switching control from 1-stage to 2-stage. A stable 2-stage heating operation is guaranteed, only if the load-side water inlet temperature is over a certain value, where the 1-stage heating operation should be done first from a cold start. The second issue is oil level control. An oil shortage problem in the low stage compressor, which depends on the degree of suction superheat, was solved by a proper oil level control scheme.

오일-질소가스 혼합유체를 이용한 고온 오일플러싱 시스템 공정설계에 관한 연구 (A Study on Process Design of Hot Oil Flushing System Using Oil-Nitrogen Gas Mixing Fluid)

  • 이윤호;최부홍
    • 해양환경안전학회지
    • /
    • 제23권5호
    • /
    • pp.541-548
    • /
    • 2017
  • 본 연구에서는 해양플랜트설비 건조 현장에서 사용되고 있는 기존 고온 오일 플러싱 장비에 대한 성능개선을 위해 기존의 플러싱 장치에 사용되던 오일에 질소가스를 혼합한 고온 오일 플러싱 시스템에 대하여 국제표준화기구 코드(ISO code)를 기준으로 이론적 연구를 수행하였다. 연구를 위해 오일-질소가스 혼합유체 플러싱 시스템 공정을 설계 후 청정성능에 영향을 주는 혼합유체의 혼합비율, 온도, 레이놀즈수 및 액상분율 등에 대한 공정모사 결과도 분석하였다. 그 결과 관 직경과 가스상의 체적분률이 일정한 상태에서 혼합유체의 체적유량이 증가될수록 수평 유압배관 입출구의 액상분율 차이 ${\Delta}{\alpha}_L$ 값은 증가하게 되고 배관길이 방향의 위치에 따라 오일과 질소가스 기포 사이의 상분포가 달라짐을 확인했다. 이러한 상분포의 변화는 오일-질소가스 혼합유체 플러싱 시스템의 청정성능에도 커다란 영향을 줄 것으로 예상된다.

향기성분 미세캡슐화를 위한 유화 및 분무건조 공정 최적화 (Optimization of Emulsification and Spray Drying Process for the Microencapsulation of Flavor Compounds)

  • 조영희;신동석;박지용
    • 한국식품과학회지
    • /
    • 제32권1호
    • /
    • pp.132-139
    • /
    • 2000
  • 본 연구는 분무건조를 이용한 미세캡슐화 기술을 이용하여 유화압력 및 분무건조에 있어서 송풍 온도와 분무 속도를 최적화하는데 목표를 갖고 수행되었다. 분석지표로 유화액의 유화안정성과 flavor release를, 분무건조 분말의 total oil, surface oil, flavor release, 흡습성을 측정하고, SEM에 의해 분말의 형태를 관찰하였다. Wall system을 이용하여 piston-type homogenizer의 압력을 달리하여 실험한 결과 향기성분의 미세캡슐화를 위한 최적 유화압력은 20.7MPa이었다. 분무건조공정에 있어서 송풍 온도와 분무 속도를 독립변수로, total oil retention, surface oil content, flavor release를 종속변수로 반응 표면 분석법을 행한 결과 송풍 온도는 $170{\circ}C$, 분무 속도는 15,000rpm이 우수한 공정 조건임을 예측 할 수 있었다.

  • PDF