• Title/Summary/Keyword: oil hydrolysis

Search Result 113, Processing Time 0.027 seconds

Hydrolysis of Rice Bran Oil Using Immobilized Lipase in a Stirred-Batch Reactor

  • Murty, V.Ramachandra;Bhat, Jayadev;Muniswaran, P.K.A.
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.7 no.6
    • /
    • pp.367-370
    • /
    • 2002
  • Candida cylindracea lipase was immobilized by adsorption on acid washed glass beads. It was observed that protein loading of the support depends on the size of the particle, with smaller particle containing higher amount of protein per unit weight. Initial reaction rate linearly varied up to enzyme concentration of 17.25 U/mL. Amount of free fatty acids produced was linearly proportional up to the enzyme loading of 1650 $\mu$g/g of bead. Achievement of chemical equilibrium took longer time in the case of less protein loading. Degree of hydrolysis was found to decrease in second and third consecutive batch operations on repeated use of immobilized lipase.

The distribution of fatty acids in the position of glycerides hydrolyzed from fish oil by lipase

  • Kim, Yong-Min;Hu, Hong-Bo;Hur, Byung-Ki
    • 한국생물공학회:학술대회논문집
    • /
    • 2000.04a
    • /
    • pp.505-508
    • /
    • 2000
  • In order to determine the position and the content of fatty acids attached to glycerides and the migration degree of fatty acids in the migration reaction, hydrolysis of fish oil was carried out with lipolase-100T derived from Aspergillus oryzae. The content of fatty acids in the glyceride mixture was analyzed and compared with that of fish oil. The amounts of fatty acid in 2-position and the migration degree of the fatty acid in 2,3-DG (diglyceride) and 2-MG (monoglyceride) were calculated. The results showed that approximately 95% (w/w) of DHA (docosahexaenoic acid) and 65% of EPA (eicosapentaenoic acid) was attached to the 2-position of glycerides in the fish oil. Approximately 87% (w/w) of DHA and 75% of EPA remained in 2,3-DG and 88% of DHA and 65% of EPA in 2-MG were not involved in the migration reaction.

  • PDF

The Distribution and Position of Fatty Acids in Glycerides Hydrolyzed from Fish Oil by Lipase

  • Hur, Byung-Ki;Hu, Hong-Bo;Yun, Hyun-Shik
    • Journal of Microbiology and Biotechnology
    • /
    • v.10 no.4
    • /
    • pp.502-506
    • /
    • 2000
  • In order to determine the position and the content of fatty acids sttached to glycerides and the migration degree of fatty acids in the migration reaction, fish oil was hydroyzed with lipolase-100T which was derived from Aspergillus oryzae. The content of fatty acids in the glyceride mixture was analyzed and compared with that of fish oil. The amounts of fatty acid in a 2-position and the migration degree of the fatty acid in 2,3-DG (diglyceride) and 2-MG (monolyceride) were carefully calculated. The results showed that approximately 95% (w/w) of DHA (docosahexanoic acid) and 65% of EPA(eicosapentaenoic acid) were attached to the 2-position of glycerides in fish oil. Approximately 87% (w/w) of DHA and 75% of EPA remained in 2,3-DG, and 88% of DHA and 65% of EPA in 2-MG were not involved in the migration reaction.

  • PDF

Production Technology of Low-cholesterol Egg Prodecuts and Recycling of By-Products (저콜레스테롤 계란제품의 생산기술과 부산물의 재활용)

  • 유익종
    • Proceedings of the Korea Society of Poultry Science Conference
    • /
    • 2000.04a
    • /
    • pp.23-36
    • /
    • 2000
  • Hurdle technique was used to remove cholesterol efficiently from liquid egg yolk. The quality of the low cholesterol egg products from the process were evaluated. From the 75 % cholesterol reduced egg yolk through $\beta$-cyclodextrin treatment. 2 times weight of soy bean oil was added to the egg yolk and homogenized followed by centrifuged to be maximized to remove cholesterol. When the pH of the yolk was adjusted to 9, 92 % of cholesterol was removed while 95.4 % of cholesterol was removed when 3 times weight of soy bean oil was added to the egg yolk. As the results of application of supercritical carbon dioxide extraction to the 75 % cholesterol reduced egg yolk through ${\beta}$-cyclodextrin treatment, 92.5 % of the cholesterol was removed from the egg yolk at $35^{\circ}C$, 4,500 psi, for 4 hours under co-solvent. The quality characteristics of the produced low cholesterol egg products were analysed. The cholesterol reduced egg yolk produced from ${\beta}$-cyclodextrin and soy bean oil treatment showed the lower emulsion capacity compared with control. The fatty acid composition of the cholesterol reduced egg yolk produced from ${\bet}a$-cyclodextrin and soy bean oil treatment showed increased C18:2 and C18:3 compared with control while decreased C16:1 and C18: 1 compared with control. The saponification method with extracting solvent of hexane showed that cholesterol concentration was 28.1 %. The quantity of hydrolysis solution(95 % ethanol : 33 % KOH = 94 : 6) was varied from 40 to 80 times of sample weights and the cholesterol concentration of 35.7 % was the highest result in the 60 times(v/w) hydrolysis solution. Cholesterol concentration of 35.7 % was recovered at the first trial with saponification method. but it could be improved up to 95.7 % after 4 times repetitive purification.

  • PDF

Characterization of Lipases from Staphylococcus aureus and Staphylococcus epidermidis Isolated from Human Facial Sebaceous Skin

  • Xie, Winny;Khosasih, Vivia;Suwanto, Antonius;Kim, Hyung-Kwoun
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.1
    • /
    • pp.84-91
    • /
    • 2012
  • Two staphylococcal lipases were obtained from Staphylococcus epidermidis S2 and Staphylococcus aureus S11 isolated from sebaceous areas on the skin of the human face. The molecular mass of both enzymes was estimated to be 45 kDa by SDS-PAGE. S2 lipase displayed its highest activity in the hydrolysis of olive oil at $32^{\circ}C$ and pH 8, whereas S11 lipase showed optimal activity at $31^{\circ}C$ and pH 8.5. The S2 lipase showed the property of cold-adaptation, with activation energy of 6.52 kcal/mol. In contrast, S11 lipase's activation energy, at 21 kcal/mol, was more characteristic of mesophilic lipases. S2 lipase was stable up to $45^{\circ}C$ and within the pH range from 5 to 9, whereas S11 lipase was stable up to $50^{\circ}C$ and from pH 6 to 10. Both enzymes had high activity against tributyrin, waste soybean oil, and fish oil. Sequence analysis of the S2 lipase gene showed an open reading frame of 2,067 bp encoding a signal peptide (35 aa), a pro-peptide (267 aa), and a mature enzyme (386 aa); the S11 lipase gene, at 2,076 bp, also encoded a signal peptide (37 aa), pro-peptide (255 aa), and mature enzyme (399 aa). The two enzymes maintained amino acid sequence identity of 98-99% with other similar staphylococcal lipases. Their microbial origins and biochemical properties may make these staphylococcal lipases isolated from facial sebaceous skin suitable for use as catalysts in the cosmetic, medicinal, food, or detergent industries.

Wear, Oxidation and Shear Characteristics of Mixed Lubricating Oil (Mineral/Vegetable oil) with ZnDTP (ZnDTP를 첨가한 혼합윤활유(광유/식물성 오일)의 마모, 산화 및 전단 특성)

  • Lim, TaeYoon;Kim, YangHoe;Na, Byung-Ki
    • Tribology and Lubricants
    • /
    • v.34 no.4
    • /
    • pp.160-167
    • /
    • 2018
  • Vegetable oils can contribute to the goal of energy independence and security owing to their naturally renewable resources. One of the representative vegetable oils is biodiesel, which is being used in domestic and European markets as a blended fuel with automotive diesel. Vegetable oils are promising candidates as base fluids to replace petroleum lubricants because of their excellent lubricity and biodegradability. We prepared biodiesel with a purity of 99.9% via the esterification of waste cooking oil. Blended biodiesel and Petro-lube base oil were mixed to produce five types of mixed lubricating oil. We analyzed the various characteristics of the blended biodiesel with Petro-lube base oil for different blending ratios. The lubricity of the vegetable lubricant improves as the content of biodiesel increases. In addition, since zinc dialkyldithiophosphates (ZnDTPs) are widely used as multifunctional additives in petroleum-based lubricants, we optimized the blending ratio for lubricity, oxidation stability, and shear stability by adding ZnDTP as a performance additive to improve the biodiesel properties, such as oxidation stability and hydrolysis. The optimized lubricants improve by approximately 25% in lubricity and by 20 times in oxidation stability and shear stability after the addition of ZnDTP.

Development of Highly Efficient Oil-Water Separation Materials Utilizing the Self-Bonding and Microstructuring Characteristics of Aluminum Nitride Nanopowders (질화알루미늄 나노분말의 자가 접착과 미세구조화 특성을 활용한 고효율 유수분리 소재 개발)

  • Heon-Ju Choi;Handong Cho
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.27 no.3
    • /
    • pp.601-607
    • /
    • 2024
  • The discharge of oily wastewater into water bodies and soil poses a serious hazard to the environment and public health. Various conventional techniques have been employed to treat oil-water mixtures and emulsions; Unfortunately, these approaches are frequently expensive, time-consuming, and unsatisfactory outcomes. Porous materials and adsorbents are commonly used for purification, but their use is limited by low separation efficiencies and the risk of secondary contamination. Recent advancements in nanotechnology have driven the development of innovative materials and technologies for oil-contaminated wastewater treatment. Nanomaterials can offer enhanced oil-water separation properties due to their high surface area and tunable surface chemistry. The fabrication of nanofiber membranes with precise pore sizes and surface properties can further improve separation efficiency. Notably, novel technologies have emerged utilizing nanomaterials with special surface wetting properties, such as superhydrophobicity, to selectively separate oil from oil-water mixtures or emulsions. These special wetting surfaces are promising for high-efficiency oil separation in emulsions and allow the use of materials with relatively large pores, enhancing throughput and separation efficiency. In this study, we introduce a facile and scalable method for fabrication of superhydrophobic-superoleophilic felt fabrics for oil/water mixture and emulsion separation. AlN nanopowders are hydrolyzed to create the desired microstructures, which firmly adhere to the fabric surface without the need for a binder resin, enabling specialized wetting properties. This approach is applicable regardless of the material's size and shape, enabling efficient separation of oil and water from oil-water mixtures and emulsions. The oil-water separation materials proposed in this study exhibit low cost, high scalability, and efficiency, demonstrating their potential for broad industrial applications.

The Effects of Protease and Lipase on the Detergency of Fabrics (프로테아제와 리파제가 직물의 세척에 미치는 영향)

  • Lee, Jeong-Sook;Chung, So-Wha
    • Fashion & Textile Research Journal
    • /
    • v.2 no.4
    • /
    • pp.339-345
    • /
    • 2000
  • The effects of protease and/or lipase on the removal of protein soil and oily soil were investigated in this study. Cotton, rayon, nylon, and PET fabrics were soiled by padding of fresh bovine blood and spotting of mixed artificial sebum evenly. The soiled fabrics were aged at $130^{\circ}C$ for 30 minutes. The fabrics were washed by using Terg-O-Tometer at various conditions. Protease and/or lipase were added in the alcohol ethoxylate (AE) detergent solution. The removal efficiency was evaluated by analysis of protein and/or oil on the fabrics before and after washing, respectively. The detergency of protein and/or oil on the fabrics was discussed with enzyme concentration, washing time, washing temperature, pH of washing solution and fiber characteristics. The hydrolysis of protease improved effectively the removal of oil as well as protein by increasing removal of protein-oil mixed soil at the same time. The effect of lipase added detergent solution was slightly shown on the removal of oil and/or protein. The removal of mixed soils from cotton fabrics was very low because of large amount of residual soils caused by the physical characteristics of cotton fiber.

  • PDF