Some bacteria with different mechanisms for hydrocarbon degradation were isolated from oil-contaminated soils in Korea. Isolate Acinetobacter calcoaceticus SL1 showed biosurfactant- producing activity in oil-spreading test, and it exhibited a good emulsifying activity of 43.6 and 54.5% for diesel oil and n-hexane, respectively. It also has high cell surface hydrophobicity which can make it easily attaches to hydrocarbons and degrade them. It degraded 100% of 1,000 mg/L of n-octadecane and naphthalene, respectively in 3 days, 72.3% of 1,000 mg/L diesel oil in 7 days and 78.0% of 10,000 mg/L diesel oil in oil-contaminated soil during 28 days. Isolated strains Bacillus amyloliquefaciens S10 and B. subtilis GO9 can produce biosurfactant and formed 6.34 and 2.5 cm diameter of clear zones, respectively in oil-spreading test. Surface tension of their culture supernatant reduced from 74.6 to 34.4 and 33.3 mN/m, respectively during incubation, and critical micelle concentrations of culture supernatants were 2.0 and 5.9%, respectively. Consortium of A. calcoaceticus SL1 and B. amyloliquefaciens S10 degraded 77.8% of 10,000 mg/L diesel oil in 3 days, which indicated more efficient oil degradation than that by A. calcoaceticus SL1 alone. If these bacteria were applied together as a consortium to oil-contaminated sites, they may show a high removal rate of petroleum hydrocarbons.
An oil-degrading yeast, Yarrowia lipolytica 180, exhibits interesting cell surface characteristics under the growth on hydrocarbons. An electron microscopic study revealed that the cells grown on crude oil showed protrusions on the cell surface, and thicker periplasmic space and cell wall than the cell surface, and thicker periplasmic space and cell wall than the cells grown on glucose. Y. lipolytica cells lost its cell hydrophobicity after pronase(0.1 mg/ml) treatment. The strain produced two types of emulsifying materials during the growth on hydrocarbons; one was water-soluble extracellular materials and the other was cell wall-associated materials. Both emulsifying materials at lower concentration (0.12%) enhanced the oil-degrading activity of Moraxella sp. K12-7, which had medium emulsifying activity and negative cell hydrophobicity; however, it inhibited the oil-degrading activity of Pseudomunas sp. K12-5, which had medium emulsifying activity and cell hydrophobicity. These results suggest that the oil-degrading activity of Y. lipolytica 180 is closely associated with cell surface structure, and that a finely controlled application of Y.lipolytica 180 in combination with other oil-degrading microorganisms showed a possible enhancing efficiency of oil degradation.
Biological treatment of Arabian light crude oil-contaminated pebble was investigated in laboratory microcosms after supplementation with inorganic nutrients and oil-degrading microorganisms. Glass columns ($10cm{\times}20cm$) were used as microcosms and each microcosm was filled with pebbles of diameter less than 40 mm. After initial oil contamination of 2.4% (w/v), Inipol EAP-22 or slow release fertilizer (SRF) was added as inorganic nutrients and microorganisms were sprayed over pebbles. When $C_{17}$/pristane and $C_{18}$/phytane ratios were used as a marker for oil biodegradation, both ratios for microcosm supplemented with SRF and microorganisms were the lowest (below detectable range) after 92 days. Elimination of oil by abiotic processes, however, were minimal with decrease of $C_{17}$/pristane and $C_{18}$/phytane ratios from 3.55 and 2.41 to 3.06 and 1.50, respectively. The numbers of heterotrophic and oil-degrading microorganisms, and biological activity (dehydrogenase activity) corresponded to the course of biodegradation activities in all microcosms. During the whole experimental period, there was no significant nutrient deficiency only in the microcosm with SRF and microorganisms. It seemed that a continuous supply of inorganic nutrients using SRF was the most important factor for the successful performance of biological treatment in oil-contaminated pebbles.
The biodegradation experiment, the TOD analysis and the element analysis for dispersant, Bunker-C and dispersant/Bunker-C oil mixtures were conducted for the purposes of evaluating the biodegradability of dispersnat/Bunker-C oil mixtures and studying the consumption of dissolved oxygen with relation to biodegradation in the seawater. The results of biodegradation experiment showed the mixtures with $1:10{\sim}5:10$ mix ratios of dispersant to 4mg/l of Bunker-C oil to be $0.34{\sim}2.06mg/l$ of $BOD_5$ and to be $1.05{\sim}5.47mg/l$ of $BOD_{20}$ in natural seawater. The results of TOD analysis showed 1mg of Bunker-C oil to be 3.16mg of TOD. The results of element analysis showed the contents of carbon and hydrogen to be $87.3\%\;and\;11.5\%$ for Bunker-C oil, respectively, but nitrogen element was not detected in Bunker-C oil. The biodegradability of dispersant/Bunker-C oil mixture shown as the ratio of $BOD_5$/TOD was increased from $3\%\;to\;11\%$ as a mix ratio of dispersant to 4mg/l of Bunker-C oil changed from 1:10 to 5:10, and the mixtures were found to belong in the organic matter group of low-biodegradability. The deoxygenation rates($K_1$) and ultimate oxygen demands($L_o$) obtained through the biodegration experiment and Thomas slope method were found to be $0.072{\sim}0.097/day$ and $1.113{\sim}6.746mg/l$ for the mixtures with $1:10{\sim}5:10$ mix ratios of dispersant to 4mg/l of Bunker-C oil, respectively. The ultimate oxygen demand of mixture was increased as a mix ratio of dispersant to Bunker-C oil changed from 1:10 to 10:5. This means that the more dispersants are applied to the sea for Bunker-C oil cleanup, the more decreases the dissolved oxygen level in the seawater.
A psychrotrophic bacterium was isolated from oil-contaminated groundwater and identified as Rhodococcus sp. YHLT-2. Growth was observed at the temperature of 4 to $30^{\circ}C$. This strain degraded various petroleum hydrocarbons such as crude oil, diesel oil, and gasoline over the whole range of temperatures tested. The Rhodococcus sp. YHLT-2 was capable of growing even at $4^{\circ}C$, exhibiting 90% of oil biodegradation after 20 days. Degradation of crude oil occurred at low temperature in nature. This strain was also able to grow at 7% NaCl, and utilized not only short chain alkenes $(C_9\;to\;C_{12})$, but also a broad range of long chain alkenes $(C_{19}\;to\;C_{32})$ present in crude oil at $4^{\circ}C$. The Rhodococcus sp. YHLT-2 is expected to be of potential use in the in situ bioremediation of hazardous hydrocarbons under low-temperature and high-salt conditions.
The various pretreatment processes were evaluated to remove organic pollutants of weathered oil contaminated seawater(WOCS) for reverse osmosis desalination process, Biodegradation, coagulation, ultrafiltration, advanced oxidation processes and granular activated carbon filtration were used to evaluate the potential of organic pollutants removal in WOCS. Dissolved Organic Carbon(DOC) was almost not removed by biodegradation in WOCS. DOC was removed by 25% and 10% with the addition of $FeCl_3$ and PAC in WOCS, respectively. The removal efficiency using ultrafiltration(WOCS 500) was about 20% of DOC and 40% of $E_{260}$, respectively. In AOP application of WOCS, the removal of organic materials was improved up to 60% by the combination of $UV/O_3$ compared to UV process. However, 98% of DOC in woes could be removed by granular activated carbon filtration. It is revealed that activated carbon filtration is the best process for the pretratment of DOC removal.
A phenanthrene-degrading bacterium was isolated from an oil-spilled intertidal sediment sample and identified as Sphingomonas sp. KH3-2. The strain degraded polycyclic aromatic compounds such naphthalene, fluorene, biphenyl, and dibenzothiophene. When strain KH3-2 was cultured for 28 days at 25C, a total of 500 ppm of phenanthrene was degrated with a concomitant production of biomass and Folin-Ciocalteau reactive aromatic intermediates. Analysis of intermediates during phenanthrene degradation using high-performance liquid chromatography and gas chromatography/mass spectrometry indicated that Sphingomonas sp. KH3-2 primarily degrades phenanthrene to 1-hydroxy-2-naphthoic acid (1H2NA) and further metabolizes 1H2NA through the degradation pathway of naphthalene.
marine bacterium Pseudomonas sp. CHCS-2 produced the biosurfactant in the culture broth which contained 2%(w/v) arabian light crude oil and the productivity of biosurfactant was increased with the addition of glucose. The crude oil in the culture broth was degraded by this strain and carbon chain of $_nC_{12}~_nC_{22}$ was completely degradaded during the incubation for 196 h. The crude biosurfactant was purified by Amberlite XAD-7, Sepharose CL-4B and DEAE-Sepharose CL-6B column chromatography. Therefore, 0.21g/L of the purified biosurfactnat was obtained. The purified biosurfactant was a type of lipoprotein and the molecular weight was estimated as 67kDa by SDS-PAGE. The lipid composition was identified as octadecanoic acid by gas chromatography/mass spectrometry. And then, the N-terminal amino acid sequence of the protein was determined as Ser-Val-lle-Asn-Thr-lle-X-Met-lle-Gly-Gln-Gln- and the sequence did not show homology to any other known lipoprotein. Therefore, the purified lopoprotein was predicted novel biosurfactant.
Lee Jong-Kwang;Kim Hee;Lee Doo-Myoung;Lee Seok-Jae;Kim Moo-Hoon
Journal of Soil and Groundwater Environment
/
v.11
no.1
/
pp.1-6
/
2006
The analysis of functional population and its dynamics on the environment is essential for understanding bioremediation in environment. Here, we report a method for oligonucleotide microarray for the monitoring of aliphatic and aromatic degradative genes. This microarray contained 15 unique and group-specific probes which were based on 100 known genes involved pathways in biodegradation. Hybridization specificity tests with pure cultures, strain Pseudomonas aeruginosa KCTC 1636 indicated that the designed probes on the arrays appeared to be specific to their corresponding target genes. It was found that the presence of 8 genes encoding alkane, naphthalene, biphenyl, pyrene (PAH ring-hydroxylating) degradation pathway could be detected in oil contaminated soil sample. Therefore, the findings of this study strongly suggest that oligonucleotide microarray is an effective diagnostic tool for evaluating biodegradation capability in oil contaminated subsurface environment.
Journal of the Korea Organic Resources Recycling Association
/
v.7
no.1
/
pp.67-77
/
1999
The biodegradation of algae coagulated with poly aluminum chloride(PAC) was investigated by using the thermophilic oxic process. The compositions of coagulated algae were 83.5% of water content, 24.6% of ash, 32% of organic carbon with in total solid, respectively. In present study, food waste oil was used for the increment of calorie of mixtures in order to accelate the microbial activity. As a result, the maximum temperature of mixtures was higher than $50^{\circ}C$ when the mixing ratio of food oil was over 10%. However the temperature indicated the lower than $50^{\circ}C$ when conditions of no mixing with waste food oil, and 5% of mixing ratio. Therefore, the optimum condition was 10% of the mixing ration at $217l{\cdot}m^{-3}{\cdot}min^{-1}$ of air supply rate. The conversion efficiency of carbon was highest as 92% at the optimum condition. And then water was evaluated from imxture without accumulation at 10% of mixing ratio. The thermophilic oxic process well conducted that is good process for the treatment of waste algae without effluents however it has to consider the retreatment of accumulated aluminum in the reactor.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.