DOI QR코드

DOI QR Code

계면활성제 생성능과 세포 표면 소수성을 가진 세균 균주들에 의한 석유탄화수소의 생분해

Biodegradation of petroleum hydrocarbons by bacteria with surfactant producing capability and cell surface hydrophobicity

  • Kwon, Sun-Lul (Department of Biological Sciences, Kangwon National University) ;
  • Song, Hong-Gyu (Department of Biological Sciences, Kangwon National University)
  • 투고 : 2017.08.18
  • 심사 : 2017.11.30
  • 발행 : 2017.12.31

초록

다른 탄화수소 분해 방법을 가진 여러 세균을 유류-오염 토양에서 분리하였다. Acinetobacter calcoaceticus SL1은 기름-분산 시험에서 계면활성제-생성능을 보였으며 경유와 n-hexane에 대해 각각 43.6과 54.5%의 유화활성을 나타내었다. 또한 높은 세포 표면 소수성을 가졌는데 이는 탄화수소에 쉽게 부착하여 그것을 분해할 수 있게 한다. 이 균주는 1,000 mg/L의 n-octadecane과 naphthalene을 3일 내에 100% 분해하였으며, 1,000 mg/L의 경유는 7일 동안 72.3%, 그리고 10,000 mg/L로 오염시킨 토양에서는 4주 간 78%를 제거하였다. 다른 분리균주 Bacillus amyloliquefaciens S10과 B. subtilis GO9는 생물계면활성제를 생산할 수 있으며 기름-분산 시험에서 각각 6.34와 2.5 cm직경의 투명대를 형성하였다. 배양 중 그들의 배양 상등액은 표면장력이 74.6 mN/m으로부터 각각 34.4와 33.3 mN/m으로 감소하였으며, 배양 상등액의 critical micelle concentration은 각각 2.0과 5.9%이었다. A. calcoaceticus SL1과 B. amyloliquefaciens S10의 컨소시엄은 10,000 mg/L의 경유를 3일만에 77.8% 분해하였는데 이는 A. calcoaceticus SL1 단독에 의한 것보다 높은 분해능이었다. 만일 이 세균들을 유류-오염 부지에 컨소시엄으로 같이 처리한다면 높은 석유탄화수소 제거율을 나타낼 수 있을 것이다.

Some bacteria with different mechanisms for hydrocarbon degradation were isolated from oil-contaminated soils in Korea. Isolate Acinetobacter calcoaceticus SL1 showed biosurfactant- producing activity in oil-spreading test, and it exhibited a good emulsifying activity of 43.6 and 54.5% for diesel oil and n-hexane, respectively. It also has high cell surface hydrophobicity which can make it easily attaches to hydrocarbons and degrade them. It degraded 100% of 1,000 mg/L of n-octadecane and naphthalene, respectively in 3 days, 72.3% of 1,000 mg/L diesel oil in 7 days and 78.0% of 10,000 mg/L diesel oil in oil-contaminated soil during 28 days. Isolated strains Bacillus amyloliquefaciens S10 and B. subtilis GO9 can produce biosurfactant and formed 6.34 and 2.5 cm diameter of clear zones, respectively in oil-spreading test. Surface tension of their culture supernatant reduced from 74.6 to 34.4 and 33.3 mN/m, respectively during incubation, and critical micelle concentrations of culture supernatants were 2.0 and 5.9%, respectively. Consortium of A. calcoaceticus SL1 and B. amyloliquefaciens S10 degraded 77.8% of 10,000 mg/L diesel oil in 3 days, which indicated more efficient oil degradation than that by A. calcoaceticus SL1 alone. If these bacteria were applied together as a consortium to oil-contaminated sites, they may show a high removal rate of petroleum hydrocarbons.

키워드

참고문헌

  1. Bayat, Z., Hassanshahian, M., and Hesni, M.A. 2016. Study the symbiotic crude oil-degrading bacteria in the mussel Mactra stultorum collected from the Persian Gulf. Mar. Pollut. Bull. 105, 120-124. https://doi.org/10.1016/j.marpolbul.2016.02.042
  2. Bordas, F., Lafrance, P., and Villemur, R. 2005. Conditions for effective removal of pyrene from an artificially contaminated soil using Pseudomonas aeruginosa 57SJ rhamnolipids. Environ. Pollut. 138, 69-76. https://doi.org/10.1016/j.envpol.2005.02.017
  3. Chang, J.S., Radosevich, M., Jin, Y., and Cha, D.K. 2004. Enhancement of phenanthrene solubilization and biodegradation by trehalose lipid biosurfactants. Environ. Toxicol. Chem. 23, 2816-2822. https://doi.org/10.1897/03-608.1
  4. Cohen, Y. 2002. Bioremediation of oil by marine microbial mats. Int. Microbiol. 5, 189-193. https://doi.org/10.1007/s10123-002-0089-5
  5. Dean, S.M., Jin, Y., Cha, D.K., Wilson, S.V., and Radosevich, M. 2001. Phenanthrene degradation in soils co-inoculated with phenanthrene degrading and biosurfactant-producing bacteria. J. Environ. Qual. 30, 1126-1133. https://doi.org/10.2134/jeq2001.3041126x
  6. Edwards, D.A., Luthy, R.G., and Liu, Z. 1991. Solubilization of polycyclic aromatic hydrocarbons in micellar nonionic surfactant solutions. Environ. Sci. Technol. 25, 127-133. https://doi.org/10.1021/es00013a014
  7. Emtiazi, G., Saleh, T., and Hassanshahian, M. 2009. The effect of bacterial glutathione S-transferase on morpholine degradation. Biotechnol. J. 4, 202-205. https://doi.org/10.1002/biot.200800238
  8. Fernandes, P.A.V., Arruda, I.R., Santos, A.F.A.B., Araujo, A.A., Maiors, A.M.S., and Ximenes, F.A. 2007. Antimicrobial activity of surfactants produced by Bacillus subtilis R14 against multidrug-resistant bacteria. Braz. J. Microbiol. 38, 704-709. https://doi.org/10.1590/S1517-83822007000400022
  9. Haritash, A. and Kaushik, C. 2016. Degradation of low molecular weight polycyclic aromatic hydrocarbons by microorganisms isolated from contaminated soil. Int. J. Environ. Sci. 6, 472-482.
  10. Hassanshahian, M. 2014. Isolation and characterization of biosurfactant producting bacteria from Persian Gulf (Bushehr provenance). Mar. Pollut. Bull. 86, 361-366. https://doi.org/10.1016/j.marpolbul.2014.06.043
  11. Keith, L.H. and Telliard, W.A. 1979. Priority pollutants I a perspective view. Environ. Sci. Technol. 13, 416-423. https://doi.org/10.1021/es60152a601
  12. Korea University-Industry Cooperation Foundation. 2011. Enhanced oil degradation method by hydrocarbon degrading Acinetobacter sp. DR1. Korea Patent No. 1010659590000.
  13. Laha, S. and Luthy, R.G. 1991. Inhibition of phenanthrene mineralization by nonionic surfactants in soil-water systems. Environ. Sci. Technol. 25, 1920-1930. https://doi.org/10.1021/es00023a013
  14. Laha, S. and Luthy, R.G. 1992. Effects of nonionic surfactants on the mineralization of phenanthrene in soil-water systems. Biotechnol. Bioeng. 40, 1367-1380. https://doi.org/10.1002/bit.260401111
  15. Liu, Y., Li, L., Wu, Y., Tian, W., Zhang, L., Xu, L., Shen, Q., and Shen, B. 2010. Isolation of an alkane-degrading Alcanivorax sp. strain 2B5 and cloning of the alkB gene. Bioresour. Technol. 101, 310-316. https://doi.org/10.1016/j.biortech.2009.08.028
  16. Morikawa, M., Hirata, Y., and Imanaka, T. 2000. A study on the structure-function relationship of lipopeptide biosurfactants. Biochim. Biophys. Acta 1488, 211-218. https://doi.org/10.1016/S1388-1981(00)00124-4
  17. Oberbremer, A., Muhller-Hurtig, R., and Wagner, F. 1990. Effect of addition of microbial surfactant on hydrocarbon degradation in soil population in a stirred reactor. Appl. Microbiol. Biotechnol. 32, 485-489. https://doi.org/10.1007/BF00903788
  18. Pruthi, V. and Cameotra, S.S. 1997. Rapid identification of biosurfactantproducing bacterial strains using a cell surface hydrophobicity technique. Biotechnol. Tech. 11, 671-674. https://doi.org/10.1023/A:1018411427192
  19. Rahman, K., Rahman, T., Lakshmanaperumalsamy, P., and Banat, I. 2002. Towards efficient crude oil degradation by a mixed bacterial consortium. Bioresour. Technol. 85, 257-261. https://doi.org/10.1016/S0960-8524(02)00119-0
  20. Samsung Engineering Co. 2010. Treatment of oil-contaminated wastes by oil-degrading Pseudomonas sp. Patent of Republic of Korea No. 1009980350000.
  21. Sifour, M., Al-Jilawi, M.H., and Aziz, G.M. 2007. Emulsification properties of biosurfactant produced from Pseudomonas aeruginosa RB 28. Pak. J. Biol. Sci. 10, 1331-1335. https://doi.org/10.3923/pjbs.2007.1331.1335
  22. Strand, S., Standnes, D.C., and Austad, T. 2003. Spontaneous imbibition of aqueous surfactant solutions into neutral to oil-wet carbonate cores: effects of brine salinity and composition. Energ. Fuel. 17, 1133-1144. https://doi.org/10.1021/ef030051s
  23. Tam, N.F.Y., Guo, C.L., Yau, W.Y., and Wong, Y.S. 2002. Preliminary study on biodegradation of phenanthrene by bacteria isolated from mangrove sediments in Hong Kong. Mar. Pollut. Bull. 45, 316-324. https://doi.org/10.1016/S0025-326X(02)00108-X
  24. Tanase, A.M., Vassu, T., Csutak, O., Pelinescu, D., Robertina, I., and Stoica, I. 2012. Phylogenetic analysis of oil polluted soil microbial strains. Rom. Biotechnol. Lett. 17, 7093-7103.
  25. Wick, L.Y., de Munain, A.R., Springael, D., and Harms, H. 2002. Responses of Mycobacterium sp. LB501T to the low bioavailability of solid anthracene. Appl. Microbiol. Biotechnol. 58, 378-385. https://doi.org/10.1007/s00253-001-0898-z
  26. Xu, P., Ma, W., Han, H., Hou, B., and Jia, S. 2014. Characterization of naphthalene degradation by Streptomyces sp. QWE-5 isolated from active sludge. Water Sci. Technol. 70, 1129-1134. https://doi.org/10.2166/wst.2014.356
  27. Xue, J., Yu, Y., Bai, Y., Wang, L., and Wu, Y. 2015. Marine oil-degrading microorganisms and biodegradation process of petroleum hydrocarbon in marine environments: A review. Curr. Microbiol. 71, 220-228. https://doi.org/10.1007/s00284-015-0825-7
  28. Youssef, N.H., Duncan, K.E., Nagle, D.P., Savage, K.N., Knapp, R.M., and McInerney, M.J. 2004. Comparison of methods to detect biosurfactant production by diverse microorganisms. J. Microbiol. Methods 56, 339-347. https://doi.org/10.1016/j.mimet.2003.11.001
  29. Zhang, Y. and Miller, R.M. 1994. Effect of a Pseudomonas rhamnolipid biosurfactant on cell hydrophobicity and biodegradation of octadecane. Appl. Environ. Microbiol. 60, 2101-2106.