• Title/Summary/Keyword: offsets

Search Result 342, Processing Time 0.023 seconds

Characteristics of the Main Fault Zone Developed Along Yangsan Fault : On the Outcrop of Cheonjeon-ri, Dudong-myeon, Ulju-gun, Ulsan, Korea (양산단층 주 단층대의 발달특성 : 울산광역시 울주군 두동면 천전리 일대의 노두를 중심으로)

  • Ryoo, Chung-Ryul;Cheon, Youngbeom
    • The Journal of the Petrological Society of Korea
    • /
    • v.28 no.4
    • /
    • pp.347-357
    • /
    • 2019
  • The main fault zone of the Yangsan Fault, located in the southeastern part of the Korean peninsula, is newly found at the Cheonjin-ri, Dudong-myeon, Ulju-gun, Ulsan, Korea. About 100 wide fault zone exposed along the Guryangcheon stream strikes N-S and dips over 70° toward east. The main fault zone is composed of N-S-striking gouge and breccia layers and enclosed lenses. Striations on the subvertical fault surfaces mainly indicate dextral slip, but moderate-angle minor reverse faults showing top-tothe-west shearing transect the foliated high-angle gouge and breccia layers. These indicate that the dextral slip along the fault, which is interpreted as the main movement of the fault, was followed by reverse slip. The fault zone is composed of N-S-striking gouge layers and enclosed, fractured lenses. Locally distributed NE-SW- to E-W-striking fault gouge layers with fractured lenses show asymmetric folds, indicating progressive dextral movement. Therefore, the exposed fault zone has a high internal complexity due to the combined effects of NNE-SSW-trending dextral shearing and E-W-trending shortening by compression. In addition, around main boundary fault between the western volcanic rocks and eastern sedimentary rocks offsets the overlying Quaternary fluvial conglomerate. This is a good example that understanding of internal structures of main fault zone (or fault core), such as the Yangsan Fault, plays an important role to study the Quaternary activity and to find the active fault.

BER Performance of an Offset Stacked Spreading CDMA System Based on Orthogonal Complementary Codes (직교 상보코드 기반의 옵셋누적 확산 CDMA 시스템의 비트오율 성능)

  • Kim, Myoung-Jin
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.46 no.3
    • /
    • pp.1-8
    • /
    • 2009
  • DS-CDMA system has very low bandwidth efficiency, hence it is difficult to maintain high spreading gain for high speed data transmission. Offset stacked spreading CDMA(OSS-CDMA) is a transmission scheme where spreading codes with chip offsets are overlapped, then transmitted. This kind of system requires a code set that guarantees orthogonality between codes in the set of any cjip offset. An orthogonal complementary code set has a property that the crosscorrelation function between codes in the group is zero for all shifts, hence it can be used for an OSS-CDMA system. In an OCC-OSS CDMA system each user is assigned an orthogonal complementary code group. User data bit is spread by the given codes and overlapped, and the code sequences are transmitted with multicarrier. However, the offset stacked spread sequences are multilevel, and the number of symbol levels is increases as the spreading efficiency is increased. When the OSS sequence is transmitted with MPSK mapping, the signal constellation becomes dense, and the system is easily affected by channel impairments. In this paper, we propose a level clipping scheme on OSS sequence before MPSK modulated. Simulations have been carried out to investigate the BER performance of the OCC-OSS CDMA system in AWGN environment. The results show that proposed scheme outperform the scheme without level clipping.

Band alignments in Al-doped GaInAsSb/GaSb heterojunctions (Al이 도핑된 GaInAsSb/GaSb의 경계면에서의 밴드정렬)

  • Shim, Kyurhee
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.26 no.6
    • /
    • pp.225-231
    • /
    • 2016
  • The valence band maximum (VBM) and conduction band minimum (CBM) of Al-doped GaInAsSb alloys substrated on GaSb are calculated by using an analytic approximation based on the tight binding method. The relative positions of the VBM and CBM between Al-GaInASSb and GaSb determine band alignement type, valence band offset (VBO) and conductin band offset (CBO) for the heterojunctions. In this study, aluminium doping is assumed to be substituted in the cation site and limited up to 20 % because it can easily oxidize and degrade materials. It is found that the Al-doped alloys exhibit type-II band alignments over the entire composition range and make the band gaps increase, whereas the VBO and CBO decrease. The decreasing rate of VBO is higher than that of CBO, which implies the Al components play a decisive role in controlling electrons at the interface. The Al-dopled GaInAsSb alloy has a direct band gap induced by $E({\Gamma})$ with a considerable distance from the E(L) and E(X), however, $E({\Gamma})$ approaches to E(L) and E(X) in the high Sb concentration (Sb > 0.7-0.8) which might affect the electron mobility and degrade the optical quality.

An Analysis on the Properties of Beam Coupling by Using Gaussian Beam Propagation Theory (가우시언 빔 전송 이론을 이용한 빔 결합 특성 해석)

  • Han, Seog-Tae;Kang, Jin-Man;Lee, Jeong-Won;Je, Do-Hyung;Jung, Moon-Hee;Kim, Soo-Yeon;Wi, Seog-Oh
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.21 no.11
    • /
    • pp.1324-1333
    • /
    • 2010
  • In this paper, three kinds of beam coupling losses which occur in a quasi-optics circuit for millimeter wave receiver system have been intensively investigated. First, the beam coupling losses which are caused by mismatch of beam waists radii and their positions between those of one and the other have been evaluated. It shows that beam coupling losses due to mismatch of beam waists radii and their positions between two quasi-optics circuits can be minimized if beam waist radius is chosen as larger than 3 times the operation wavelength. Second, the beam coupling losses have been studied when the axis of propagation of one beam is tilted with respect to that of the other beam. It is noted that smaller beam waist radius results in greater tolerance to tilts and angular misalignments. Third, the beam coupling cases in which two beams are offset if their axes of propagation are parallel but one is displaced relative to the other have been investigated. It is confirmed that beam waists radii with larger than 3 times operation wavelength are less sensitive to lateral offsets.

4,5-Diaryl-2,2-Dimethyl-3(2Η)Furanone Derivatives as COX-2 Inhibitors-Next Generation Anti-Arthritis Candidate-

  • Shin, Song-Seok;Noh, Min-Soo;Byun, Young-Joo;Park, Jin-Kyu;Kim, Ji-Young;Lim, Kyung-Min;Ha, Jun-Yong;Kim, Jin-Kwan;Lee, Chang-Hoon
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 2001.11a
    • /
    • pp.3-6
    • /
    • 2001
  • Inflammation is an outcome or an end effect of disruption of complex immunological balance. A variety of approaches to control immunological unbalance have been tried, and some of them are in practice in the clinic. Since inflammatory disorders are reflection of very complex immunological responses, it should be difficult to have such disorders under complete control. Thus, most of the drugs, being marketed and under development, possess some degrees of undesired side offsets originating from disruption of immunological balance. Steroids are excellent drugs suppressing inflammation in short term, however, long-term use of steroids would incur a serious side effect of "rebound". Another example is TNF-${\alpha}$-neutralizing agents, such as enbrel and infliximab. TNF-${\alpha}$ has been known to play a key role in the exacerbation of inflammation, and knock-out of TNF-${\alpha}$ is regarded essential to control of chronic inflammation. The TNF-${\alpha}$-neutralizing drugs in the market are regarded very efficient in the management of rheumatoid arthritis. Upon long term use, however, those drugs cause sepsis to a certain proportion of patients. It is ironical that a high plasma level of TNF-${\alpha}$ is known to be responsible for sepsis, and that the drugs scavenging TNF-${\alpha}$ cause sepsis. The above two examples illustrate well the difficulty of discovering an anti-inflammatory drug without unwanted immunological side effects. An anti-inflammatory drug would make a case in the market, as long as the drug has huge therapeutic benefits compared to its expected but unwanted immunological side effects, where cyclooxygenase-2 inhibitors are positioning. In this presentation, will be discussed general aspects of cyclooxygenase-2 inhibition in conjunction with 3(2Η)furanone derivatives, a novel class of COX-2 inhibitors.

  • PDF

Method of a Multi-mode Low Rate Speech Coder Using a Transient Coding at the Rate of 2.4 kbit/s (전이구간 부호화를 이용한 2.4 kbit/s 다중모드 음성 부호화 방법)

  • Ahn Yeong-uk;Kim Jong-hak;Lee Insung;Kwon Oh-ju;Bae Mun-Kwan
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.42 no.2 s.302
    • /
    • pp.131-142
    • /
    • 2005
  • The low rate speech coders under 4 kbit/s are based on sinusoidal transform coding (STC) or multiband excitation (MBE). Since the harmonic coders are not efficient to reconstruct the transient segments of speech signals such as onsets, offsets, non-periodic signals, etc, the coders do not provide a natural speech quality. This paper proposes method of a efficient transient model :d a multi-mode low rate coder at 2.4 kbit/s that uses harmonic model for the voiced speech, stochastic model for the unvoiced speech and a model using aperiodic pulse location tracking (APPT) for the transient segments, respectively. The APPT utilizes the harmonic model. The proposed method uses different models depending on the characteristics of LPC residual signals. In addition, it can combine synthesized excitation in CELP coding at time domain with that in harmonic coding at frequency domain efficiently. The proposed coder shows a better speech quality than 2.4 kbit/s version of the mixed excitation linear prediction (MELP) coder that is a U.S. Federal Standard for speech coder.

8VSB Equalization Techniques for the Performance Improvement of Indoor Reception (실내 수신 성능 개선을 위한 8VSB의 등화 기법)

  • 김대진;박성우;이종주;전희영;이동두;박재홍
    • Journal of Broadcast Engineering
    • /
    • v.4 no.2
    • /
    • pp.103-118
    • /
    • 1999
  • This paper analyzes the performance of symbol timing recovery and equalizer in 8VSB digital terrestrial TV receiver under various multipath signals and proposes equalization techniques which improve indoor reception performance. Data segment sync is used for symbol timing recovery and timing offset is measured for echoes of various delays and amplitudes by using symbol timing detection filter whose pattern is +1. +1. -1. and -1. Measured timing offsets were below 10% for long echoes with more than 5 symbol delay and above 30% for short echoes with around 1 symbol delay. Indoor reception is always more challenging than outdoor reception due to lower signal strength. large and short multipaths. and moving interfering objects. So it is considered to use FSE (Fractionally Spaced Equalizer) which is very robust to timing offset and blind equalizer which can update equalizer tap coefficients even by information data. We compare the performance of conventional DFE (Decision Feedback Equalizer) and FSE-DFE using LMS algorithm and Stop and Go algorithm for the indoor reception. Experiments reveals FSE has excellent performance for large timing offset and Stop and Go algorithm shows good performance for Doppler shift. so we propose to use FSE-DFE structure with Stop and Go algorithm for the reliable indoor reception.

  • PDF

Process Fault Probability Generation via ARIMA Time Series Modeling of Etch Tool Data

  • Arshad, Muhammad Zeeshan;Nawaz, Javeria;Park, Jin-Su;Shin, Sung-Won;Hong, Sang-Jeen
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.241-241
    • /
    • 2012
  • Semiconductor industry has been taking the advantage of improvements in process technology in order to maintain reduced device geometries and stringent performance specifications. This results in semiconductor manufacturing processes became hundreds in sequence, it is continuously expected to be increased. This may in turn reduce the yield. With a large amount of investment at stake, this motivates tighter process control and fault diagnosis. The continuous improvement in semiconductor industry demands advancements in process control and monitoring to the same degree. Any fault in the process must be detected and classified with a high degree of precision, and it is desired to be diagnosed if possible. The detected abnormality in the system is then classified to locate the source of the variation. The performance of a fault detection system is directly reflected in the yield. Therefore a highly capable fault detection system is always desirable. In this research, time series modeling of the data from an etch equipment has been investigated for the ultimate purpose of fault diagnosis. The tool data consisted of number of different parameters each being recorded at fixed time points. As the data had been collected for a number of runs, it was not synchronized due to variable delays and offsets in data acquisition system and networks. The data was then synchronized using a variant of Dynamic Time Warping (DTW) algorithm. The AutoRegressive Integrated Moving Average (ARIMA) model was then applied on the synchronized data. The ARIMA model combines both the Autoregressive model and the Moving Average model to relate the present value of the time series to its past values. As the new values of parameters are received from the equipment, the model uses them and the previous ones to provide predictions of one step ahead for each parameter. The statistical comparison of these predictions with the actual values, gives us the each parameter's probability of fault, at each time point and (once a run gets finished) for each run. This work will be extended by applying a suitable probability generating function and combining the probabilities of different parameters using Dempster-Shafer Theory (DST). DST provides a way to combine evidence that is available from different sources and gives a joint degree of belief in a hypothesis. This will give us a combined belief of fault in the process with a high precision.

  • PDF

A Scalable Bias-dependent P-HEMT Noise Model with Single Drain Current Noise Source (드레인 전류 잡음원만을 고려한 스케일링이 가능한 바이어스 의존 P-HEMT 잡음모델)

  • 윤경식
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.24 no.10A
    • /
    • pp.1579-1587
    • /
    • 1999
  • Bias-dependent noise models of $0.2\mu\textrm{m}$ gate length P-HEMT's which are scalable with gate width are proposed. To predict S-parameters of the P-HEMT's the intrinsic parameters except for $\tau$ subtracted the offsets introduced in this paper are normalized to the gate width and then scaled. The small-signal model parameters are expressed as fitting functions of the drain current to $\textrm{I}_{dss}$ ratio and gate width. In addition, to estimate accurately noise parameters the noise temperature $\textrm{T}_{g}$ of the intrinsic resistance, the equivalent noise conductance $\textrm{G}_{ni}$ of the gate current noise source, and the equivalent noise conductance $\textrm{G}_{no}$ of the drain current noise source are adopted as the noise model parameters. The extracted values of $\textrm{T}_{g}$ are nearly independent of drain current and gate width and their average is around the ambient temperature. The extracted values of $\textrm{G}_{ni}$ are small enough to be neglected to the circuit characteristics. From the comparison of the noise model with only $\textrm{G}_{no}$ and that having $\textrm{T}_{g}$, $\textrm{G}_{ni}$ and $\textrm{G}_{no}$ to the measured data it is fund that even the former model is in good agreement with the measured noise parameters. Thus, from a practical point of view the noise model having only the drain current noise source is confirmed as a scalable bias-dependent model.

  • PDF

Design of Carrier Recovery Circuit for High-Order QAM - Part I : Design and Analysis of Phase Detector with Large Frequency Acquisition Range (High-Order QAM에 적합한 반송파 동기회로 설계 - I부. 넓은 주파수 포착범위를 가지는 위상검출기 설계 및 분석)

  • Kim, Ki-Yun;Cho, Byung-Hak;Choi, Hyung-Jin
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.38 no.4
    • /
    • pp.11-17
    • /
    • 2001
  • In this paper, we propose a polarity decision carrier recovery algorithm for high order QAM(Quadrature Amplitude Modulation), which has robust and large frequency acquisition performance in the high order QAM modem. The proposed polarity decision PD(Phase Detector) output and its variance characteristic are mathematically derived and the simulation results are compared with conventional DD(Decision-Directed) method. While the conventional DD algorithm has linear range of $3.5^{\circ}{\sim}3.5^{\circ}$, the proposed polarity decision PD algorithm has linear range as large as $-36^{\circ}{\sim}36^{\circ}$ at ${\gamma}-17.9$. The conventional DD algorithm can only acquire offsets less than ${\pm}10\;KHz$ in the case of the 256 QAM while an analog front-end circuit generally can reduce the carrier-frequency offset down to only ${\pm}100\;KHz$. Thus, in this case additional AFC or phase detection circuit for carrier recovery is required. But by adopting the proposed polarity decision algorithm, we can find the system can acquire up to ${\pm}300\;KHz$at SNR = 30dB without aided circuit.

  • PDF