Proceedings of the Korea Information Processing Society Conference
/
2022.05a
/
pp.45-47
/
2022
Mobile edge computing (MEC), which enables mobile terminals to offload computational tasks to a server located at the user's edge, is considered an effective way to reduce the heavy computational burden and achieve efficient computational offloading. In this paper, we study a multi-user MEC system in which multiple user devices (UEs) can offload computation to the MEC server via a wireless channel. To solve the resource allocation and task offloading problem, we take the total cost of latency and energy consumption of all UEs as our optimization objective. To minimize the total cost of the considered MEC system, we propose an DRL-based method to solve the resource allocation problem in wireless MEC. Specifically, we propose a Asynchronous Advantage Actor-Critic (A3C)-based scheme. Asynchronous Advantage Actor-Critic (A3C) is applied to this framework and compared with DQN, and Double Q-Learning simulation results show that this scheme significantly reduces the total cost compared to other resource allocation schemes
According to the various IoT(Internet of Things) services, there have been lots of task offloading researches for IoT devices. Since there are service response delay and core network load issues in conventional cloud computing based offloadings, fog computing based offloading has been focused whose location is close to the IoT devices. However, even in the fog computing architecture, the load can be concentrated on the for computing node when the number of requests increase. To solve this problem, the opportunistic fog computing concept which offloads task to available computing resources such as cars and drones is introduced. In previous fog and opportunistic fog node researches, the offloading is performed immediately whenever the service request occurs. This means that the service requests can be offloaded to the opportunistic fog nodes only while they are available. However, if the service response delay requirement is satisfied, there is no need to offload the request immediately. In addition, the load can be distributed by making the best use of the opportunistic fog nodes. Therefore, this paper proposes a delayed offloading scheme to satisfy the response delay requirements and offload the request to the opportunistic fog nodes as efficiently as possible.
KIPS Transactions on Computer and Communication Systems
/
v.12
no.12
/
pp.363-370
/
2023
Object detection technology that accurately recognizes the road and surrounding conditions is a key technology in the field of autonomous driving. In the field of autonomous driving, object detection technology requires real-time performance as well as accuracy of inference services. Task offloading technology should be utilized to apply object detection technology for accuracy and real-time on resource-constrained devices rather than high-performance machines. In this paper, experiments such as performance comparison of task offloading, performance comparison according to input image resolution, and performance comparison according to camera object resolution were conducted and the results were analyzed in relation to the application of task offloading for real-time object detection of autonomous driving in resource-constrained devices. In this experiment, the low-resolution image could derive performance improvement through the application of the task offloading structure, which met the real-time requirements of autonomous driving. The high-resolution image did not meet the real-time requirements for autonomous driving due to the increase in communication time, although there was an improvement in performance. Through these experiments, it was confirmed that object recognition in autonomous driving affects various conditions such as input images and communication environments along with the object recognition model used.
Ethernet is one of the most successful LAN technologies. Now gigabit ethernet is available in real network and some network interface cards(NIC) supports TCP segment offloading (TSO), IP checksum offloading(ICO), Jumbo frame and interrupt moderation. If we use this features appropriately, we obtain high throughput with low CPU utilization. This paper represents the network performance by varying above features.
Innovations from current researches on cloud computing such as applying bio-inspired computing techniques have brought new level solutions in offloading mechanisms. With the growing trend of mobile devices, mobile cloud computing can also benefit from applying bio-inspired techniques. Energy-efficient offloading mechanisms on mobile cloud systems are needed to reduce the total energy consumption but previous works did not consider energy consumption in the decision-making of task distribution. This paper proposes the Particle Swarm Optimization (PSO) as an offloading strategy of cloudlet to data centers where each task is represented as a particle during the process. The collected tasks are classified using K-means clustering on the cloudlet before applying PSO in order to minimize the number of particles and to locate the best data center for a specific task, instead of considering all tasks during the PSO process. Simulation results show that the proposed PSO excels in choosing data centers with respect to energy consumption, while it has accumulated a little more processing time compared to the other approaches.
KSII Transactions on Internet and Information Systems (TIIS)
/
v.8
no.11
/
pp.3916-3936
/
2014
Smartphone applications like games, image processing, e-commerce and social networking are gaining exponential growth, with the ubiquity of cellular services. This demands increased computational power and storage from mobile devices with a sufficiently high bandwidth for mobile internet service. But mobile nodes are highly constrained in the processing and storage, along with the battery power, which further restrains their dependability. Adopting the unlimited storage and computing power offered by cloud servers, it is possible to overcome and turn these issues into a favorable opportunity for the growth of mobile cloud computing. As the mobile internet data traffic is predicted to grow at the rate of around 65 percent yearly, even advanced services like 3G and 4G for mobile communication will fail to accommodate such exponential growth of data. On the other hand, developers extend popular applications with high end graphics leading to smart phones, manufactured with multicore processors and graphics processing units making them unaffordable. Therefore, to address the need of resource constrained mobile nodes and bandwidth constrained cellular networks, the computations can be migrated to resourceful servers connected to cloud. The server now acts as a bridge that should enable the participating mobile nodes to offload their computations through Wi-Fi directly to the virtualized server. Our proposed model enables an on-demand service offloading with a decision support system that identifies the capabilities of the client's hardware and software resources in judging the requirements for offloading. Further, the node's location, context and security capabilities are estimated to facilitate adaptive migration.
The Journal of the Institute of Internet, Broadcasting and Communication
/
v.18
no.6
/
pp.63-68
/
2018
Offloading is a method of communicating, processing, and receiving results from some of the applications performed on local computers to overcome the limitations of computing resources and computational speed.Recently, it has been applied in mobile games, multimedia data, 360-degree video processing, and image processing for Internet broadcasting to speed up processing and reduce battery consumption in the mobile computing sector. This paper implements a viewer that enables users to convert various flat-panel images and view contents in a wireless Internet environment and presents actual results of an experiment so that users can easily understand the images. The 360 degree spherical image is successfully converted to a plane image with Double Panorama, Quad, Single Rectangle, 360 Overview + 3 Rectangle depending on the image acquisition position of the 360 degree camera through the interface. During the experiment, more than 100 360 degree spherical images were successfully converted into plane images through the interface below.
By distributing computing tasks among devices at the edge of networks, edge computing uses virtualization, distributed computing and parallel computing technologies to enable users dynamically obtain computing power, storage space and other services as needed. Applying edge computing architectures to Internet of Vehicles can effectively alleviate the contradiction among the large amount of computing, low delayed vehicle applications, and the limited and uneven resource distribution of vehicles. In this paper, a predictive offloading strategy based on the MEC load state is proposed, which not only considers reducing the delay of calculation results by the RSU multi-hop backhaul, but also reduces the queuing time of tasks at MEC servers. Firstly, the delay factor and the energy consumption factor are introduced according to the characteristics of tasks, and the cost of local execution and offloading to MEC servers for execution are defined. Then, from the perspective of vehicles, the delay preference factor and the energy consumption preference factor are introduced to define the cost of executing a computing task for another computing task. Furthermore, a mathematical optimization model for minimizing the power overhead is constructed with the constraints of time delay and power consumption. Additionally, the simulated annealing algorithm is utilized to solve the optimization model. The simulation results show that this strategy can effectively reduce the system power consumption by shortening the task execution delay. Finally, we can choose whether to offload computing tasks to MEC server for execution according to the size of two costs. This strategy not only meets the requirements of time delay and energy consumption, but also ensures the lowest cost.
KIPS Transactions on Computer and Communication Systems
/
v.11
no.5
/
pp.139-146
/
2022
With the recent development of the Internet of Things (IoT) and the convergence of vehicles and IT technologies, high-performance applications such as autonomous driving are emerging, and multi-access edge computing (MEC) has attracted lots of attentions as next-generation technologies. In order to provide service to these computation-intensive tasks in low latency, many methods have been proposed to partition tasks so that they can be performed through cooperation of multiple MEC servers(MECSs). Conventional methods related to task partitioning have proposed methods for partitioning tasks on vehicles as mobile devices and offloading them to multiple MECSs, and methods for offloading them from vehicles to MECSs and then partitioning and migrating them to other MECSs. In this paper, the performance of task partitioning methods using offloading and migration is compared and analyzed in terms of service delay, blocking rate and energy consumption according to the method of selecting partitioning targets and the number of partitioning. As the number of partitioning increases, the performance of the service delay improves, but the performance of the blocking rate and energy consumption decreases.
KIPS Transactions on Computer and Communication Systems
/
v.10
no.11
/
pp.291-296
/
2021
The development of the Internet of Things(IoT) requires large computational resources for tasks from numerous devices. Mobile Edge Computing(MEC) has attracted a lot of attention in the IoT environment because it provides computational resources geographically close to the devices. Task offloading to MEC servers is efficient for devices with limited battery life and computational capability. In this paper, we assumed an industrial IoT environment requiring high reliability. The complexity of optimization problem in industrial IoT environment with many devices and multiple MEC servers is very high. To solve this problem, the problem is divided into two. After selecting the MEC server considering the queue status of the MEC server, we propose an offloading decision algorithm that optimizes reliability and energy consumption using genetic algorithm. Through experiments, we analyze the performance of the proposed algorithm in terms of energy consumption and reliability.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.