• Title/Summary/Keyword: odor treatment

Search Result 429, Processing Time 0.03 seconds

Application of Non-Thermal Plasma for the Simultaneous Removal of Odor and Sludge (무기악취와 슬러지 동시처리를 위한 저온플라즈마의 적용)

  • Hwang, Hyun-Jung;Ann, Hae-Young;Shin, Seung-Kyu;Song, Ji-Hyeon
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.24 no.1
    • /
    • pp.85-92
    • /
    • 2010
  • In this study, odorous compounds emitted from various wastewater treatment were treated with using the non-thermal plasma reaction, and the effluent gas from the plasma reactor was introduced to a waste sludge reactor to achieve simultaneous sludge reduction. Hydrogen sulfide, the model odorous compound, was removed at 70% using the plasma reaction, and greater than 99% removal efficiency was observed when treated by the sludge reactor. In addition, the sludge reactor showed a high efficiency of ozone removal. As ozone reacted with sludge, oxidation with organic matters took place, and total COD decreased by 50~60% and soluble COD increased gradually. As a result, the integrated process consisting of the non-thermal plasma and the sludge reactor can be successfully applied for the simultaneous treatment of malodorous gas and waste sludge.

A Study on an Improvement for Management System of Municipal Sewage Sludge through an investigation of MSS Treatment Facilities (하수오니 처리시설 현황분석을 통한 처리체계 개선 방안 연구)

  • Kim, Young-Koo;Phae, Chae-Gun;Ryu, Don-Sik
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.14 no.2
    • /
    • pp.121-128
    • /
    • 2006
  • In this study, the existing MSS facilities were investigated for examination the the present condition of MSS treatment system. There are 23 MSS treatment facilities across the country, In total facilities, 6 facilities have economical problems, and 2 facilities were stopped the operation of establishments for technical problems, and most facilities are suffering from environmental problems, for example, odor and waste water. These kinds of problems play a role as obstacle to treat MSS efficiently. Accordingly, to reform current MSS treatment system, a few adequate measures are required. First a Guide line, which is a manual for establishment of MSS treatment facilities efficiently and environmentally friendly, must be offered from the agencies concerned of the Ministry of Environment to local governments. Second, to devise a plan for MSS treatment, Ministry of Environment and all local governments should devise a long-range policy synthetically not fragmentarily and temporarily.

  • PDF

A study on the quality of Naengmyon Broth - Sensory and Microbiological properties by fermentation and addition of Dongchimi- (냉면육수의 품질에 관한 연구 - 동치미 발효 정도와 첨가량에 따른 관능적 및 미생물학적 특성 -)

  • Kim Hyung-Ryurl;Jang Myung-Sook
    • Korean journal of food and cookery science
    • /
    • v.21 no.1 s.85
    • /
    • pp.1-11
    • /
    • 2005
  • The application of Dongchimi liquid into Naengmyon broth for the improved eating quality of Naengmyon was scientifically explored by reviewing the quality properties of the product. Primarily, the optimum fermentation conditions for Dongchimi from which the liquid portion was extracted were pursued and the optimum mixing ratio was sought on the basis of sensory and microbiological properties of the product. The liquid portions which had been periodically extracted from Dongchimi at intervals of two or five days during fermentation at $10^{\circ}C$ were added to Naengmyon broth. The treatments were prepared with three levels, namely, basic broth only('A') and the ratios of 3:7(v/v, 'B') and 5:5(v/v, 'C') of Dongchimi liquid and basic broth, respectively. According to assessments of Dongchimi liquid on taste and intensity based on sensory analyses, the organoleptic factors such as color, smell, sour taste, carbonated taste, and overall acceptability were given higher values from day 11 to day 17 in all items. As for the assessment of Dongchimi liquid on intensity, color, sour odor, moldy odor, and carbonated taste have shown the increasing scores during with high intensities while those for clearness has stayed low. Most of the phenomena observed from the Naengmyon broth substituted with $30\%$ (Treatment 'A') and $50\%$ (Treatment 'B') of Dongchimi liquids with different storage periods ensued much of the previous fermentation pattern of Dongchimi itself. Organoleptic assessment on taste and its intensity showed that better(the best) scores could be obtained at between day 16$\~$25(17) and 13$\~$20(15) for Treatments A and B, respectively. The intensity scores of taste for color, smell, carbonated taste, sour taste, and mouthfeel were increased while those for clearness, palatability, and meaty ones were decreased with lapse of fermentation. The numbers of total cell and lactic acid bacterial counts of Dongchimi has increased until day 13 and then decreased in the later stages. Total cell count and lactic acid bacterial counts of Naengmyon broth also increased until the 13th day and then they began to decrease. It was also proven that slightly over-ripened Dongchimi liquid was more preferable for adding into Naengmyon broth. Granting the optimum ripening period of Dongchimi liquid itself to be 13 days, both Treatment A and Treatment B were evenly favored using Dongchimi liquids slightly over-ripened at days 13 to 17. However, Treatment A was more favored than Treatment B when Dongchimi liquid over-ripened for 20 to 26 days was used.

Different Oxygen Transmission Rate Packing Films During Modified Atmosphere Storage: Effects on Asparagus Spear Quality

  • Yoon, Hyuk Sung;Choi, In-Lee;Kang, Ho-Min
    • Horticultural Science & Technology
    • /
    • v.35 no.3
    • /
    • pp.314-322
    • /
    • 2017
  • The aim of this study was to determine suitable oxygen transmission rate (OTR) films for modified atmosphere (MA) storage of asparagus spears (Asparagus officinalis L.), and to examine the related changes in asparagus spear quality. Asparagus spears were packed with 10,000, 20,000, 40,000, 70,000, and $100,000cc/m^2{\cdot}day{\cdot}atm$ OTR film treatments for MA storage, and perforated film (conventional storage) was used as the control. The fresh weight loss rate was less than 1% in all OTR film treatments but not in the control. In all OTR film treatments, ethylene content rapidly increased on the first day of storage, and gradually decreased thereafter to $2.0{\mu}L{\cdot}L^{-1}$ by the final storage day. In the 10,000 cc and 20,000 cc OTR film treatments, carbon dioxide content was maintained within the permissible range for asparagus spears under recommended controlled atmosphere (CA) and MA conditions (5-12%). The oxygen content was maintained between 12% and 20% in all OTR film treatments. Hue angles and total chlorophyll content were highest in the 10,000 cc OTR film treatment in both tips and stems. Visual quality was maintained at a saleable level only in the 10,000 cc OTR film treatment until the final storage day (25 days). Based on sensory evaluation, the least off-odor was detected in the 10,000 cc OTR film treatment, and the most in the control treatment. While the soluble solids content decreased with all film treatments, it was maintained at the highest level in the 10,000 cc OTR film treatment. Vitamin C content decreased with all film treatments during storage, but was maintained at higher levels in the 10,000, 20,000, and 40,000 cc OTR film treatments. The firmness of tips and stems increased with storage duration in all film treatments, stems were firmer under the perforated film, 10,000, and 20,000 cc OTR film treatments. Given these results, the 10,000 cc OTR film treatment is considered the most appropriate for MA asparagus spear storage since visual quality and soluble solids content were maintained, and fresh weight loss, vitamin C content, off-odor, and yellowing were suppressed during storage.

Physicochemical Changes of Food Waste Slurry Co-fermented with Pig Manure Slurry (음식물쓰레기와 돈분 액상물의 혼합부숙시 이화학적 특성 변화)

  • So, Kyu-Ho;Seong, Ki-Seog;Hong, Seung-Gil
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.40 no.4
    • /
    • pp.242-248
    • /
    • 2007
  • To find a feasibility of utilization of food waste slurry (FWS) generated during composting, FWS was combined with pig manure slurry (PMS) in various ratios and the change of nutrient contents and offensive odor of the combined slurries before and after fermentation were studied. The initial pH was 7.67 for PMS and 8.45 for FWS. However, during the fermentation, pH increased in the combined slurries with the higher FWS rate among the treatments while decreased in thosewith higher PMS rate. EC of each slurry sample showed that the difference among combined slurry samples has been reduced during fermentation and became stabilized in $21{\sim}23dS\;m^{-1}$ after 180 days. After 180 days fermentation, total nitrogen (T-N) decreased. T-N of mixture with a half and more FWS decreased up to 0.1%, less than the critical level (0.3%). The contents of O.M., T-N, phosphorus, calcium and magnesium decreased with fermentation while those of potash and salinity increased. From initial fermentation until 30 days, a lot of $NH_3$, as an offensive odor, was produced. However, it decreased steadily, except in higher PMS rate. In terms of producing $50{\mu}g\;ml^{-1}$ of $NH_3$, the top layer took 30 days after fertilization with FWS only, 45 days for utilized treatment with F75 (25 % of PMS), 75 days for utilized with F50 (50%) and F25 (75%) and 90 days for PMS only, respectively. $RNH_2$ also had similar trend with $NH_3$ but it was produced continuously as long fermentation proceeded. In terms of $RNH_2$, the decrease in concentration up to $50{\mu}g\;ml^{-1}$ were; 45 days for FWS only(F100), 105 days for F75 utilization, 120 daysfor F50, 165 days for F25, respectively. ethyl mercaptan was produced in PMS until 180 days after fertilization but it was not produced in FWS. Sensory tests as an integrated test of offensive odor were also done. FWS showed lower than 1 after 30 days from initial fermentation, while PMS had still offensive odor even up to 180 days from initial fermentation. It is probably affected by the continuous production of ethyl mercaptan and amines. However, considering in decrease T-N content caused by volatilization while offensive odor intensity according to official standard of fertilizer is lower than 2. Further study on controlling offensive odor needs to be done.

Nutrient Removal in an Advanced Treatment Process using BIO-CLOD (BIO-CLOD를 이용한 고도처리공정에서의 영양염류 제거)

  • Park, Wan-Cheol;Lee, Mi-Ae;Sung, Il-Wha
    • Journal of Environmental Health Sciences
    • /
    • v.40 no.4
    • /
    • pp.322-329
    • /
    • 2014
  • Objectives: The purpose of this study was to investigate the effect of BIO-CLOD on advanced wastewater treatment for enhanced removal efficiency and meeting the stringent discharge water requirements of wastewater treatment plants. Methods: Two experimental apparatuses consisting of anaerobic, anoxic and aeration tanks were operated. One included a BIO-CLOD cultivation tank. Organic and nutrient parameters and removal efficiency were analyzed by pH, BOD, CODcr, SS, T-N and T-P. Results: The average removal efficiencies of BOD, COD and SS from the apparatus with BIO-CLOD tank installation were 95.5%, 88.6% and 92.9%, respectively, and these were higher than the results from the apparatus without BIO-CLOD. The average TP removal efficiency with BIO-CLOD tank marked 56.0%, higher than the 47.3% from the apparatus without one. BIO-CLOD showed a higher performance for TN removal at 49.6%, compared to the result without BIO-CLOD of 34.3% Conclusion: By reaction with BIO-CLOD, ammonia removal was effective in the aeration tank, as was phosphorus release in the anaerobic tank. Phosphorus luxury uptake and nitrification in aeration tank proceeded smoothly. The application of BIO-CLOD can improve the decrease of odor and settleability of activated sludge in a wastewater treatment plant, as well as increase the removal efficiency of organic and nutrient materials in water.

Design of In-situ Self-diagnosable Smart Controller for Integrated Algae Monitoring System

  • Lee, Sung Hwa;Mariappan, Vinayagam;Won, Dong Chan;Shin, Jaekwon;Yang, Seungyoun
    • International Journal of Advanced Culture Technology
    • /
    • v.5 no.1
    • /
    • pp.64-69
    • /
    • 2017
  • The rapid growth of algae occurs can induce the algae bloom when nutrients are supplied from anthropogenic sources such as fertilizer, animal waste or sewage in runoff the water currents or upwelling naturally. The algae blooms creates the human health problem in the environment as well as in the water resource managers including hypoxic dead zones and harmful toxins and pose challenges to water treatment systems. The algal blooms in the source water in water treatment systems affects the drinking water taste & odor while clogging or damaging filtration systems and putting a strain on the systems designed to remove algal toxins from the source water. This paper propose the emerging In-Situ self-diagnosable smart algae sensing device with wireless connectivity for smart remote monitoring and control. In this research, we developed the In-Site Algae diagnosable sensing device with wireless sensor network (WSN) connectivity with Optical Biological Sensor and environmental sensor to monitor the water treatment systems. The proposed system emulated in real-time on the water treatment plant and functional evaluation parameters are presented as part of the conceptual proof to the proposed research.

Development of VOCs Treatment Technology using High Efficiency Hybrid System with Multi-Scrone (멀티 선회류식 세정장치를 이용한 고효율 하이브리드 VOCs 습식처리 SYSTEM 개발)

  • Lim, Seong-Il;Kim, Nor-Jung;Kim, Sun-Mi;Lee, Seong-Hun;Kim, Sun-Uk;Chang, Won-Seok;Park, Dae-Won;Kim, Lae-Hyun;Kim, Jae-Hyung
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.31 no.7
    • /
    • pp.491-498
    • /
    • 2009
  • We studied to develop high-efficiency removal system of odor and VOCs(Volatile Organic Compounds) from environmental infrastructure facilities and oil refineries, painting facilities and so on. It can replace RTO and RCO. We tried an removal experiment for VOCs (toluene, xylene, benzene, MEK(methyl ethyl ketone), ethanol, formalin etc. and odor compounds (hydrogen sulfide, etc.). In process, as pre-treatment we used the scrubber with vortex flow (Multi-scrone) to remove the hydrophilic VOCs and as post-treatment, used fibrous bio-filter to remove the hydrophobic VOCs. This hybrid system remove with high efficiency both the hydrophilic VOCs and hydrophobic VOCs. And we tried to make this system to be compact. In experiment using Multi-scrone, contact time is 2~3 seconds and absorption scrubbing water is diaphragm-type electrolysis water. hydrophilic VOCs like ethanol and relatively hydrophilic odor compounds like hydrogen sulfide is excellent, these substances has been removed almost completely, respectively 95~99%, 93~97%. And for MEK, formalin also Showed a high removal efficiency, respectively 78~90%, 72~85%. But in experiment using Multi-scrone, the hydrophobic VOCs like BTX showed a low removal efficiency, respectively 16~22%, 12~18%, 8~16%. In hydrophobic VOCs, toluene removal experiment using fibrous bio-filter, early efficiency was low but after 10days, adaptation period showed high efficiency 85~95%. but in the mixed phase, toluene and MEK efficiency reduced 5~10%. this show microorganism treat first MEK easy to remove. The removal efficiency for MEK using the fibrous biofilter was stable, 80~92%. This hybrid system is also high economical efficiency for RTO. This system reduce more than 50% the cost of equipment and maintenance. As a result, we expect this technology is in the limelight as high efficiency treatment of VOCs in mid-low price.

Odor control of Foodwaste Treatment Facilities (음식물류폐기물처리시설의 악취관리대책에 관한 연구)

  • Kim, Sung-Bum;Oh, Gil-Jong;Kim, Kye-Yeun;Jung, Myung-Sook
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.14 no.2
    • /
    • pp.71-82
    • /
    • 2006
  • This study was carried out to assess and analyze the overall problems of the facilities in recycling and treating of foodwaste on the basis of the unit operation facilities. It proposes effective alternatives for the high profitable management that can meet the regulation of the facilities. The study is composed of several parts including a collection of academic reports, field studies regarding the facilities operated by local government and the private sector, the analysis on odor samples from compost facilities and processing facilities for animal feed from foodwaste. Twenty facilities were surveyed on the field to find out the existing problems and to compare between facilities. Several facilities didn't meet the governmental regulation on some processes, especially the stages of input, storage, odor control and the qualities of final products under the unit equipment operation. The analysis on the odors from the phases of input, shredding and fermentation of a compost facility and processing facilities for feed, the odors from shredding equipments were higher in concentration than the others. The Major odors from the composting facility contained hydrogen sulfide ($H_2S$), methyl mercaptan ($CH_3{SH}$), Dimethyl sulfide ($(CH_3)_2S$) and Ammonia ($NH_3$) and the major odors from the animal feed facility contained methyl mercaptan ($CH_3{SH}$), Trimethylamine ($(CH_3)_3N$) and Acetaldehyde ($CH_3CHO$).

  • PDF

The Effect of Yeast(Saccharomyces exiguus SJPAF1) on Odor Emission and Contaminants Reduction in Piggery Slurry (효모(Saccharomyces exiguus SJPAF1) 첨가에 따른 돈분뇨의 악취제거 및 오염물질 감소 효과)

  • Yoon, Deok-Hoon;Kang, Dong-Woo;Nam, Ki-Woong
    • Korean Journal of Environmental Agriculture
    • /
    • v.28 no.1
    • /
    • pp.47-52
    • /
    • 2009
  • The aim of this study was to evaluate the effect of yeast(Saccharomyces exiguus SJPAF1, referred to as SA) addition on odor emission and contaminants reduction in piggery sluny. Four different rates of yeast addition were compared: no addition(SA0), 0.7L(SA0.7), 1.0L(SA1.0), and 1.5L(SA1.5) to one tone of piggery slurry. Odor emission tended to decrease with increasing the yeast application with concurrent effects of changes in temperature on outside of reactors. Particularly, reduction in ammonia emission was proportional to the yeast application rate; it reduced from 161.1 ppm in SA0 to 47.1 ppm in SA1.5 after 6 days of treatment Decomposition of piggery shiny by yeast increased to 13.8% more in SA1.5, and total amounts of piggery slurry decreased to 12.5% in SA1.5. Total coliforms were detected below 30MPN $ml^{-1}$ in SA1.5, while $8.3{\times}10^3$ MPN $ml^{-1}$ of Total coliforms were found in SA0. However, the effect of yeast addition in piggery slurry seemed to have no influence on the removal efficiency of contaminants such as BOD, COD, $NO_3^{-}-N$, $NH_4^{+}-N$, $PO_4^{-}P$. Consequently, the yeast(Saccharomyces exiguus SJPAF1) addition of 1.5% in the piggery sluny seems to have potential applicability for improving agent of pig-farm environment.