• 제목/요약/키워드: octanol/water partition coefficient

검색결과 47건 처리시간 0.026초

신규 세파로스포린계 항생물질 DWC-751의 흰쥐 및 생쥐 체내동태 (Pharmacokinetic Study on DWC-751, a New Cephalosporin, in Rats and Mice)

  • 심창구;최은진;이성원;박남준;강영숙;유영효
    • Biomolecules & Therapeutics
    • /
    • 제1권2호
    • /
    • pp.204-210
    • /
    • 1993
  • The distribution and excretion of DWC-751, a new cephalosporin, were examined in rats and mice following a single intravenous administration. DWC-751 in plasma and urine was determined by both HPLC and microbiological assay. The plasma concentration of the drug declined biexponentially. The initial and terminal half lives of the drug were 3.0 and 28.3 min, respectively. Binding of the drug to plasma proteins was 42.3%. The distribution volume at steacly-state ($Vd_{ss}$) was only 0.341 ι/kg, which is well correlated with the low n-octanol/water partition coefficient of the drug ($K_{o/w{\cong}0$) Actually, the drug was distributed to liver, kidney and lung with very low organ/plasma concentration ratio. The drug, was excreted mainly via renal excretion, i.e., the total($CL_T$) and apparent renal($CL_{R}$) clearances of the drug were 10.8 and 7.5 ml/min/kg, respectively.

  • PDF

Calculation and Analysis of Hydrophobicity of the Dyes Synthesized for Unmodified Polypropylene Fibers Using Molecular Descriptors

  • Kim, Tae-Kyeong;Jang, Kyung-Jin;Jeon, Seon-Hee
    • 한국염색가공학회지
    • /
    • 제21권5호
    • /
    • pp.21-26
    • /
    • 2009
  • In order to analyze numerically the hydrophobicity of the new dyes synthesized for unmodified pure polypropylene fibers, the octanol-water partition coefficient (logP), which is one of molecular descriptors representing hydrophobicity of organic compounds, was obtained by a semi-empirical method using Chem3D software. For the dyes of higher logP than around 5, the affinity of the dyes towards unmodified polypropylene fiber was substantial. In contrast to the new dyes for polypropylene, conventional disperse dyes have logP values lower than 5 and exhibited poor affinity.

HDTMA-Bentonite로부터 페놀류 화합물의 경쟁탈착

  • 신원식;김영규;송동익
    • 한국지하수토양환경학회:학술대회논문집
    • /
    • 한국지하수토양환경학회 2001년도 총회 및 춘계학술발표회
    • /
    • pp.15-18
    • /
    • 2001
  • Sorption/desorption studies were conducted to determine sorption/desorption characteristics of phenolic compounds (phenol and 4-chlorophenol) in organically modified natural bentonite. The cationic exchange capacity (CEC) of bentonite was exchanged with a cationic surfactant, hexadecyltrimethylammonium (HDTMA), to enhance the removal capacity of organic phenol contaminants dissolved in aqueous solution. This modification produces a change of the surface property of bentonite from hydrophilic to organophilic. The single-solute and bi-solute competitive adsorptions were performed In batch mode to investigate the removal of two toxic organic Phenols, chlorophenol and 4-chlorophenol on the HDTMA-bentonite. The adsorption affinity of the 4-chlorophenol was higher than phenol due to higher octanol:water partition coefficient (Kow). The single-solute and bi-solute competitive desorptions were also performed investigate the competitive desorption of the phenolic compounds from HDTMA-bentonite. Freundlich model was used to analyze the single-solute adsorption/desorption results, while the IAST model predicted the hi-solute adsorption/desorption equilibria. The IAST model well predicted hi-solute competitive adsorption/desorption behaviors.

  • PDF

경피흡수를 위한 케토롤락 하이드로겔의 제제설계 및 평가 (Formulation Design and Evaluation of Ketorolac Tromethamine Hydrogel for Transdermal Delivery System)

  • 조인숙;이계원;이종화;지웅길
    • Journal of Pharmaceutical Investigation
    • /
    • 제33권1호
    • /
    • pp.21-28
    • /
    • 2003
  • Ketorolac tromethamine(KT) is a nonsteroidal agent with potent analgesic and moderate anti-inflammatory activity. The lipid-water partition coefficient of KT was evaluated and KT gel was formulated as a gel containing different pH, different concentrations of polymer (poloxamer 407, carbopol 941), propylene glycol, ethanol and various enhancers. The resulting KT gels were evaluated with respect to their viscosity, in vitro drug permeation rate through hairless mouse skin and stability. In n-octanol and chloroform, the lipid-water partition coefficient of KT was the highest at pH 4 phosphate buffer. The apparent viscosity of KT gel increased with an increase in gel pH, polymer and enhancer concentration. But the apparent viscosity of KT gel decreased with an increase in ethanol concentration. The permeation rate of KT through hairless mouse skin from gels different pH was maximum at pH 4 which is close to KT $pK_{a}$ 3.54. The permeation rate decreased with an increase in polymer, propylene glycol concentration. But the permeation rate increased with an increase in ethanol. The increase of drug concentration from 1 to 3% induced linear increase in permeation rate. The best enhancer was the combination of $Labrasol^{\circledR},\;Transcutol^{\circledR}$, oleic acid and l-menthol. In the accelerated stability test(25, 40 and $50{\circ}C$), pH 5 gel was most stable and pH 4 gel was most unstable for 90 days.

RO/NF막 공정을 이용한 BTEX 물질의 제어 특성 평가 (Removal Mechanisms of BTEX Compounds by RO/NF Membrane Processes)

  • 장혜원;박찬혁;홍승관;윤여민;정진영;정윤철
    • 한국물환경학회지
    • /
    • 제22권5호
    • /
    • pp.926-932
    • /
    • 2006
  • A series of bench-scale membrane filtration experiments were performed to systematically investigate the removal mechanisms of reverse osmosis (RO) and nanofiltration (NF) membranes for BTEX (benzene, toluene, ethylene, xylene), trichloroethylene (TCE) and tetrachloroethylene (PCE). The molecular weight of these organic compounds ranged from 78 to 166 dalton. The rejection of organic compounds by RO/NF membranes varied significantly from 59.6 to 99.2% depending on solute and membrane types. Specifically, experimental results demonstrated that the removal efficiency of RO/NF membranes increased as solute molecular characteristics such as W/L (molecular width/length) ${\times}$ $M_W$ (molecular weight) and octanol-water partition coefficient increased. This observation suggested that the rejection of small organic compounds by RO/NF membranes was determined by the combined effect of physical (molecular size and shape) and chemical (hydrophobicity) properties.

중공사 나노여과막을 이용한 방향족 농약의 배제 특성 (Rejection Properties of Aromatic Pesticides by a Hollow Fiber NF Membrane)

  • 정용준;키소 요시아키;박순길;김종용;민경석
    • 한국물환경학회지
    • /
    • 제20권3호
    • /
    • pp.296-300
    • /
    • 2004
  • The rejection properties of 6 aromatic pesticides were evaluated by a continuous flow system equipped with a hollow fiber NF membrane. Different from the separation experiment of batch cell, the rejection and the removal could be calculated exactly because the concentration of feed, permeate and retentate was separately obtained. The lowest and the highest rejection were found in carbaryl(54.8%) and methoxychlor(99.2%), respectively, and the removals were always shown higher than rejections. This may be caused by some reasons such as the solute adsorption on the membrane, the variation of feed concentration. Although molecular weight, molecular width regarded as solute characteristics and log P(n-octanol/water partition coefficient) as hydrophobicity could be applied to explain the rejection property, these factors should be considered together for better analysis. According to the higher relationship between log B(solute permeability) and molecular weight, it was revealed that the solute separation with this membrane was influenced more by molecular weight.

다양한 비스테로이드성 소염진통제의 쥐 피부 투과 (In vitro Rat Skin Permeation of Various NSAIDs)

  • 김민정;도희정;조원제;용철순;최한곤;이치호;김대덕
    • Journal of Pharmaceutical Investigation
    • /
    • 제32권4호
    • /
    • pp.313-319
    • /
    • 2002
  • Rat skin permeation of various nonsteroidal antiinflammatory drugs (NSAIDs) was investigated in vitro using Franz diffusion cell at $37^{\circ}C$. The effect of various skin permeation enhancers was also observed as a preliminary study of developing transdermal delivery systems of NSAIDs. Lipophilicity of NSAIDs was determined from thε partition coefficient (log P) in 1-octanol/water and 1-octanol/IPB mutual-saturated solutions. The solubility was determined in water, isotonic phosphate buffer (IPB), and propylene glycol (PG) at $37^{\circ}C$. The rat skin permeation rate of acetaminophen, piroxicam, and aceclofenac was almost negligible, although they were saturated in PG. Addition of 1 % permeation enhancer increased the permeation rate of ketoprofen, ketorolac, and diclofenac. However, the skin permeation rate of ibuprofen did not increase with the addition of various enhancers. Among the permeation enhancers testεd, oleic acid was the most effective for various NSAIDs. Based on the daily dose, lipophilicity, and the skin permeation ratε achieved in this study, ketoprofen and ketorolac seem to be the most promising drug candidates for transdermal delivery systems, especially when formulated with unsaturated fatty acids, such as oleic acid.

BCF WIN을 이용한 Acetanilide의 생물농축특성 평가 (Estimated Bioaccumulation properties of Acetanilide using BCFWIN)

  • 권민정;최윤호;송상환;박혜연;구현주;박광식
    • Environmental Analysis Health and Toxicology
    • /
    • 제16권4호
    • /
    • pp.223-226
    • /
    • 2001
  • Acetanilide is a High Production Volume Chemical, which is produced about 2,300 tons/year in Korea as of 1998 survey. Most is used as an intermediate for synthesis of pharmaceuticals and dyes. The chemical is one of seven chemicals, which are under the frame of OECD SIDS program sponsored by National Institute of Environmental Research of Korea. Regarding the information on the environmental fate. bioconcentration is one of important factor to estimate the environmental tranfer. However, measurement of bioconcentration needs high expense and time. For this reason, OECD recommends to use BCFWIN model to estimate bioconcentration of organic chemicals, BCFWIN estimates the bioconcentration factor (BCF) of an organic compound using the log octanol-water partition coefficient (Kow) of the compound. Structures are entered into BCFWIN through SMITES (Simplified Molecular Input Line Entry System) notations. The BCFWIN method classifies a compound as either ionic or non-ionic. ionic compounds include carboxylic acids, sulfonic acids and salts of sulfonic acids, and charged nitrogen compounds (nitrogen with a + 5 valence such as quaternary ammonium compounds). All other compounds are classified as non-ionic. In this study, bioaccumulation of acetanilide was estimated using BCFWIN model based on SMIIES notation, chemical name data and partition coefficient as one of environmental fate/distribution of the chemical elements.

  • PDF

Identification of Tetrachloroethylene Sorption Behaviors in Natural Sorbents Via Sorption Models

  • Al Masud, Md Abdullah;Choi, Jiyeon;Shin, Won Sik
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제27권6호
    • /
    • pp.47-57
    • /
    • 2022
  • A number of different methods have been used for modeling the sorption of volatile organic chlorinated compounds such as tetrachloroethylene/perchloroethylene (PCE). In this study, PCE was adsorbed in several natural sorbents, i.e., Pahokee peat, vermicompost, BionSoil®, and natural soil, in the batch experiments. Several sorption models such as linear, Freundlich, solubility-normalized Freundlich model, and Polanyi-Manes model (PMM) were used to analyze sorption isotherms. The relationship between sorption model parameters, organic carbon content (foc), and elemental C/N ratio was studied. The organic carbon normalized partition coefficient values (log Koc = 1.50-3.13) in four different sorbents were less than the logarithm of the octanol-water partition coefficient (log Kow = 3.40) of PCE due to high organic carbon contents. The log Koc decreased linearly with log foc and log C/N ratio, but increased linearly with log O/C, log H/C, and log (N+O)/C ratio. Both log KF,oc or log KF,oc decreased linearly with log foc (R2 = 0.88-0.92) and log C/N ratio (R2 = 0.57-0.76), but increased linearly with log (N+O)/C (R2 = 0.93-0.95). The log qmax,oc decreased linearly as log foc and log C/N increased, whereas it increased with log O/C, log H/C and log (N+O)/C ratios. The log qmax,oc increased linearly with (N+O)/C indicating a strong dependence of qmax,oc on the polarity index. The results showed that PCE sorption behaviors were strongly correlated with the physicochemical properties of soil organic matter (SOM).

Kinetic Biodegradation of Polycyclic Aromatic Hydrocarbons for Five Different Soils under Aerobic Conditions in Soil Slurry Reactors

  • Ha, Jeong Hyub;Choi, Suk Soon
    • 공업화학
    • /
    • 제32권5호
    • /
    • pp.581-588
    • /
    • 2021
  • In this study, soil slurry bioreactors were used to treat soils containing 16 polycyclic aromatic hydrocarbons (PAHs) for 35 days. Five different soil samples were taken from manufactured gas plant (MGP) and coal tar disposal sites. Soil properties, such as carbon content and particle distribution, were measured. These properties were significantly correlated with percent biodegradation and degradation rate. The cumulative amount of PAH degraded (P), degradation rate (Km), and lag phase (𝜆) constants of PAHs in different MGP soils for 16 PAHs were successfully obtained from nonlinear regression analysis using the Gompertz equation, but only those of naphthalene, anthracene, acenaphthene, fluoranthene, chrysene, benzo[k]fluoranthene, benzo(a)pyrene, and benzo(g,h,i)perylene are presented in this study. A comparison between total non-carcinogenic and carcinogenic PAHs indicated higher maximum amounts of PAH degraded in the former than that in the latter owing to lower partition coefficients and higher water solubilities (S). The degradation rates of total non-carcinogenic compounds for all soils were more than four times higher than those of total carcinogenic compounds. Carcinogenic PAHs have the highest partitioning coefficients (Koc), resulting in lower bioavailability as the molecular weight (MW) increases. Good linear relationships of Km, 𝜆, and P with the octanol-water partitioning coefficient (Kow), MW, and S were used to estimate PAH remaining, lag time, and biodegradation rate for other PAHs.