• Title/Summary/Keyword: octane number

Search Result 67, Processing Time 0.029 seconds

A study on the effect of Octane-Number on combustion characteristics and vehicle performance (옥탄가 차이가 연소특성 및 차량 성능에 미치는 영향 연구)

  • Noh, Kyeong-ha;Kim, Jung-hwan;Lee, Min-ho;Kim, Ki-ho
    • Journal of Energy Engineering
    • /
    • v.25 no.3
    • /
    • pp.41-50
    • /
    • 2016
  • This study examined the combustion characteristics and emissions, fuel economy, acceleration by selecting the two fuel with octane number difference to investigate the effect on the combustion characteristics and performance of the vehicle according to the octane number. First, a single-cylinder engine was used for the combustion characteristic experiment, Of the fuel, which is distributed on the market by the selection of two different octane fuel it is performed experiments. Single cylinder experiment examined the combustion characteristics that appear when you gradually advancing the ignition timing by the ignition timing and air-fuel ratio control for each fuel and through an output, emissions, pressure, hence examined the correlation between by octane number. In addition through the actual vehicle compared the changes in the fuel octane number difference, through acceleration tests examined the impact of the octane number requirements for high-performance segment. As a result, fuel of high octane number in accordance with the ignition timing the advancing showed a slightly stable combustion characteristics, a slight increase occurred in the acceleration test and power. However, both fuel does not significantly differ from the current mode, simulating the urban and highway fuel efficiency. Therefore, the operating conditions of the vehicle currently being sold on the Effects of high-octane fuel. fuel efficiency was found insufficient.

Simplified Reaction Scheme of Hydrocarbon Fuels and Its Application to Autoignition of Gasoline with Different Octane Numbers (탄화수소계 연료의 축소반응모델과 가솔린연료의 옥탄가 변화에 따른 자발화 지연시간)

  • 여진구
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.3
    • /
    • pp.13-19
    • /
    • 2003
  • Mathematically simplified reaction scheme that simulates autoignitions of the end gases in spark ignition engines has been studied computationally. The five equation model is described, to predict the essential features of hydrocarbon oxidation. This scheme has been calibrated against autoignition delay times measured in rapid compression machines. The rate constants, activation temperatures, Ta, Arrhenius preexponential constants, A, and heats of reaction for stoichiometric n-heptane/air, iso-octane/air, and their mixtures have all been optimised. The optimisation has been guided by Morley's correlation of the ratio of chain branching to linear termination rates with octane number. Comparisons between computed and experimental autoignition delay times have validated the Present simplified reaction scheme and the influences of octane number upon autoignition delay times have been computationally investigated. It has been found that both cool flame and high temperature direct reactions can have an effect on autoignition delay times.

Solubilization of Mixture of Hydrocarbon Oils by C12E8 Nonionic Surfactant Solution (C12E8 비이온 계면활성제 수용액에 의한 탄화수소 오일 혼합물의 가용화 특성에 관한 연구)

  • Lim, JongChoo
    • Applied Chemistry for Engineering
    • /
    • v.19 no.1
    • /
    • pp.59-65
    • /
    • 2008
  • The equilibrium solubilization capacity of the mixture of hydrocarbon oils by $C_{12}E_8$ nonionic surfactant micellar solution was measured at $23^{\circ}C$ by gas chromatography (GC) analysis. Experimental results indicated that the solubilization capacity for pure alkanes was found to decrease almost linearly with the alkane carbon number (ACN) of the hydrocarbon oil. For the binary mixture systems of the hydrocarbon oils both selective and nonselective solubilization behaviors were observed depending on the difference in ACN of the two hydrocarbon oils. Equilibrium solubilization tests for the hydrocarbon oil mixtures in $C_{12}E_8$ surfactant solutions such as the three n-octane/n-nonane, n-nonane/n-decane and n-decane/n-undecane mixture systems suggest almost non-selective solubilization. On the other hand, the n-octane/n-decane and n-octane/n-undecane systems, where difference in ACN of the two hydrocarbon oils is greater than 1, selective solubilization in favor of n-octane was conclusively demonstrated.

Effect of fuel octane number on knock characteristics in a spark-ignition engine (연료의 옥탄가 변화에 따른 스파크 점화기관의 노킹특성의 변화)

  • 이홍철;전광민
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.14 no.5
    • /
    • pp.61-68
    • /
    • 1992
  • Knock phenomenon is an abnormal combustion originated from autoignition of unburned gas in the end-gas region during the later stage of combustion process and it accompanys a high pitched metallic noise. Engine Knock is accompanied with a vibration of engine cylinder and when it is severe, it can cause major engine demage. Engine Knock is characterized in terms of knock crank angle, knock pressure, pressure jump and knock intensity. In this study, a 4-cylinder spark ignition engine was used for experiment and eighty consecutive cycles were analyzed statistically. The purpose of this study is to characterize spark ignition engine knock as a function of ignition timing and fuel research octane number. The result of this study can be summerized as follows. Knock occurrence angle approached TDC as ignition timing is advanced. Pressure and knock intensity gradually increased as spark timing is advanced. Mean knock occurence angle gradually approached TDC as fuel research octane number is decreased for identical spark timing. Knock intensity increased linearly as RON is decreased.

  • PDF

Determination of Research Octane Number using NIR Spectral Data and Ridge Regression

  • Jeong, Ho Il;Lee, Hye Seon;Jeon, Ji Hyeok
    • Bulletin of the Korean Chemical Society
    • /
    • v.22 no.1
    • /
    • pp.37-42
    • /
    • 2001
  • Ridge regression is compared with multiple linear regression (MLR) for determination of Research Octane Number (RON) when the baseline and signal-to-noise ratio are varied. MLR analysis of near-infrared (NIR) spectroscopic data usually encounters a collinearity problem, which adversely affects long-term prediction performance. The collinearity problem can be eliminated or greatly improved by using ridge regression, which is a biased estimation method. To evaluate the robustness of each calibration, the calibration models developed by both calibration methods were used to predict RONs of gasoline spectra in which the baseline and signal-to-noise ratio were varied. The prediction results of a ridge calibration model showed more stable prediction performance as compared to that of MLR, especially when the spectral baselines were varied. . In conclusion, ridge regression is shown to be a viable method for calibration of RON with the NIR data when only a few wavelengths are available such as hand-carry device using a few diodes.

Solubilization of Hydrocarbon Oils by C12E8 Nonionic Surfactant Solution (C12E8 비이온 계면활성제 수용액에 의한 탄화수소 오일의 가용화에 관한 연구)

  • Lim, JongChoo
    • Korean Chemical Engineering Research
    • /
    • v.45 no.3
    • /
    • pp.219-225
    • /
    • 2007
  • The equilibrium solubilization capacity of pure hydrocarbon oils by 2.5 wt% $C_{12}E_8$ nonionic surfactant solution was measured at $30^{\circ}C$ by gas chromatography (GC) analysis. Experimental results indicated that the molar solubilization ratio (MSR) for pure alkanes was found to decrease almost linearly with the alkane carbon number (ACN) of the hydrocarbon oil. For the binary mixture systems of the hydrocarbon oils both selective and nonselective solubilization behaviors were observed depending on the difference in carbon number of the two hydrocarbon oils. Equilibrium solubilization tests for the two n-octane/n-nonane and n-nonane/n-decane mixture systems in $C_{12}E_8$ surfactant solutions suggest slightly selective solubilization in favor of n-octane, but the small difference in solubilization rates between two hydrocarbon oils does not allow ruling out non-selective solubilization for these particular systems. This is certainly not the case for the n-octane/n-decane mixture, for which selective solubilization was conclusively demonstrated by GC analysis data.

A Study on the Ignition Characteristics of Gasoline due to Variation in Octane Number (옥탄가 변화에 따른 가솔린의 발화특성에 관한 연구)

  • Kim, Hyeong Seok;Kim, Won Kil;Choi, Yu Jung;Kim, Jung-Hun;Choi, Jae-Wook
    • Journal of the Korean Society of Safety
    • /
    • v.33 no.2
    • /
    • pp.45-51
    • /
    • 2018
  • This study was conducted to assess the hazards of gasoline in relevance to the changes in octane numbers, and gasoline's spontaneous ignition temperature and instantaneous ignition temperature were measured. Spontaneous ignition temperature of regular gasoline was $301^{\circ}C$ for sample quantity of $100{\sim}125{\mu}{\ell}$. Spontaneous ignition temperature of middle gasoline was $380^{\circ}C$ for sample quantity of $125{\mu}{\ell}$ and that of premium gasoline was $400^{\circ}C$. As gasoline's octane numbers increased, their spontaneous ignition temperatures increased, and their instantaneous ignition temperature were almost identically $499^{\circ}C$ for sample quantity of $125{\mu}{\ell}$. In addition, activation energies of regular gasoline, middle gasoline, and premium gasoline were 10.48 Kcal/mol, 16.89 Kcal/mol, and 24.55 Kcal/mol respectively.

A Study on the Prediction of the Octane Number of Gasolines from the Carbon Type Structural Compositions by 13C-Nuclear Magnetic Resonance Spectroscopy (13C-NMR에 의해 결정된 탄소 유형별 구조적 조성으로부터 가솔린 옥탄가의 예측에 관한 연구)

  • Choi, Ju-Hwan;Chun, Yong-Jin;Choi, Ung-Su;Choi, Young-Sang;Kwon, Oh-Kwan
    • Applied Chemistry for Engineering
    • /
    • v.4 no.4
    • /
    • pp.753-759
    • /
    • 1993
  • The research and motor octane numbers (RON & MON, respectively) of a gasoline are dynamic measures of its quality of performance as a fuel. ASTM standard engine test methods (RON:ASTM D-2699, MON:ASTM D-2700) have been used for determining the octane numbers (RON,MON)of gasolines. But these methods have been widely criticized because their repeatability and reproducibility of the test method are very poor. In addition to these objections, the cost and operation time involved in measuring by the standard method led to searches for "non -engine" methods (Gas Chromatographic method, Nuclear Magnetic Resonance Spectroscopic method). In this study, we determined the carbon type structural compositions of the gasolines by $^{13}C-NMR$ spectroscopy and predicted the octane number (RON & MON) with good accuracy. we presented an assessment of the effects of molecular structural composition on octane numbers.

  • PDF

Analysis of Compression-induced Auto-ignition Combustion Characteristics of HCCI and ATAC Using the Same Engine

  • Iijima, Akira;Shoji, Hideo
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.9
    • /
    • pp.1449-1458
    • /
    • 2006
  • Controlled Auto-ignition (CAI) combustion processes can be broadly divided between a CAI process that is applied to four-cycle engines and a CAI process that is applied to two-cycle engines. The former process is generally referred to as Homogeneous Charge Compression Ignition (HCCI) combustion and the later process as Active Thermo-Atmosphere Combustion (ATAC) The region of stable engine operation differs greatly between these two processes, and it is thought that the elucidation of their differences and similarities could provide useful information for expanding the operation region of HCCI combustion. In this research, the same two-cycle engine was operated under both the ATAC and HCCI combustion processes to compare their respective combustion characteristics. The results indicated that the ignition timing was less likely to change in the ATAC process in relation to changes in the fuel octane number than it was in the HCCI combustion process.

The Effect of Additives on the Gasohol (가솔린의 첨가물질이 가소홀에 미치는 영향에 관한 연구)

  • Lee, Jin-Hui;Le, Il-Woo
    • Journal of the Korean Applied Science and Technology
    • /
    • v.28 no.3
    • /
    • pp.374-378
    • /
    • 2011
  • The studied results of the gasohol, which is the mixture of gasoline and ethanol, were investigated for the promotion of applications on commercially by gasoline vehicle referring to octane number, minimum water contents be involved, and separation inhibitors for protecting phase separation etc. especially for the E10 and E20. The results showed that octane number will be revised by higher value as the ethanol is added more, and it's more effect in case of be added as a mixture than individually when inhibition agents is added for the inhibition of separation. and it's reasonable for the water contents of less than 1% by comparing with experimental results and in view of regulations of various countries.