Solubilization of Mixture of Hydrocarbon Oils by C12E8 Nonionic Surfactant Solution

C12E8 비이온 계면활성제 수용액에 의한 탄화수소 오일 혼합물의 가용화 특성에 관한 연구

  • Lim, JongChoo (Department of Chemical and Biochemical Engineering, Dongguk University)
  • 임종주 (동국대학교 공과대학 생명.화학공학과)
  • Received : 2007.09.27
  • Accepted : 2007.10.30
  • Published : 2008.02.10

Abstract

The equilibrium solubilization capacity of the mixture of hydrocarbon oils by $C_{12}E_8$ nonionic surfactant micellar solution was measured at $23^{\circ}C$ by gas chromatography (GC) analysis. Experimental results indicated that the solubilization capacity for pure alkanes was found to decrease almost linearly with the alkane carbon number (ACN) of the hydrocarbon oil. For the binary mixture systems of the hydrocarbon oils both selective and nonselective solubilization behaviors were observed depending on the difference in ACN of the two hydrocarbon oils. Equilibrium solubilization tests for the hydrocarbon oil mixtures in $C_{12}E_8$ surfactant solutions such as the three n-octane/n-nonane, n-nonane/n-decane and n-decane/n-undecane mixture systems suggest almost non-selective solubilization. On the other hand, the n-octane/n-decane and n-octane/n-undecane systems, where difference in ACN of the two hydrocarbon oils is greater than 1, selective solubilization in favor of n-octane was conclusively demonstrated.

비이온 계면활성제 $C_{12}E_8$ 마이셀에 의한 이성분 탄화수소 오일 혼합물 시스템의 가용화도(equilibrium solubilization capacity)를 $23^{\circ}C$에서 기체 크로마토그래피(GC)를 이용하여 측정하였다. 단일 성분의 탄화수소 오일 가용화도는 탄화수소 오일의 탄소수(ACN)가 증가함에 따라 거의 선형적으로 감소하였다. 한편 탄화수소 오일의 이성분 시스템은 사용한 두 탄화수소 오일의 탄소수(alkane carbon number, ACN) 차이에 따라 선택적 가용화 혹은 비선택적 가용화 경향을 나타내었다. 본 연구에서 가용화도 실험을 수행한 n-octane/n-nonane, n-nonane/n-decane과 n-decane/n-undecane 혼합물 시스템과 같이 이성분 탄화수소 혼합물의 탄소수 차이가 1인 경우에는 비선택적(non-selective) 가용화 경향을 나타내었다. 반면에 n-octane/n-decane과 n-octane/n-undecane 혼합물 시스템과 같이 탄소수 차이가 1보다 큰 경우에는 선택적(selective) 가용화 경향을 나타내었다.

Keywords

References

  1. C. S. Dunaway, S. D. Christian, and J. F. Scamehorn, Solubilization in Surfactant Aggregates, ed. S. D. Christian and J. F. Scamehorn, Surfactant Science Series 55, 1, Marcel Dekker, Inc., New York (1995)
  2. G. J. Cho and D. T. Glatzhofer, J. Ind. Eng. Chem., 3, 29 (1997)
  3. S. G. Rho and C. H. Kang, J. Ind. Eng. Chem., 10, 247 (2004)
  4. H. Y. Cheon, M. S. Kim, and N. H. Jeong, J. Ind. Eng. Chem., 11, 10 (2005)
  5. J. H. Oh, J. Korean Ind. Eng. Chem., 11, 80 (2000)
  6. S. K. Lee, J. W. Han, B. H. Kim, P. G. Shin, S. K. Park, and J. C. Lim, J. Korean Ind. Eng. Chem., 10, 537 (1999) https://doi.org/10.1007/s100510050883
  7. S. K. Lee, J. W. Han, B. H. Kim, P. G. Shin, S. K. Park, and J. C. Lim, Korean J. Chem. Eng., 38, 179 (2000)
  8. J. W. Han, H. S. Park, B. H. Kim, P. G. Shin, S. K. Park, and J. C. Lim, Energy Fuels, 15, 189 (2001) https://doi.org/10.1021/ef000181q
  9. J. Weiss, J. Coupland, and D. J. McClements, J. Phys. Chem., 100, 1066 (1996) https://doi.org/10.1021/jp9524892
  10. J. Weiss, J. Coupland D. Brathwaite, and D. J. McClements, Colloids Surf. A: Phys. Chem. Eng. Asp., 121, 53 (1997) https://doi.org/10.1016/S0927-7757(96)03742-9
  11. B. J. Carroll, J. Colloid Interface Sci., 79, 126 (1981) https://doi.org/10.1016/0021-9797(81)90055-2
  12. B. J. Carroll, B. G. C. O'Rourke, and A. J. I. Ward, J. Pharm. Pharmacol., 34, 287 (1982) https://doi.org/10.1111/j.2042-7158.1982.tb04709.x
  13. B. J. Carroll, J. Chem. Soc. Faraday Trans., 82, 3205 (1986) https://doi.org/10.1039/f19868203205
  14. B. J. Carroll and P. J. Doyle, J. Pharm. Pharmacol., 40, 229 (1988) https://doi.org/10.1111/j.2042-7158.1988.tb05233.x
  15. A. C. Donegan and A. J. I. Ward, J. Pharm. Pharmacol., 39, 45 (1987) https://doi.org/10.1111/j.2042-7158.1987.tb07160.x
  16. B. G. C. O'Rourke, A. J. I. Ward, and B. J. Carroll, J. Pharm. Pharmacol., 39, 865 (1987) https://doi.org/10.1111/j.2042-7158.1987.tb03119.x
  17. B. H. Chen and C. A. Miller, Colloids Surf. A: Phys. Chem. Eng. Asp., 128, 129 (1997) https://doi.org/10.1016/S0927-7757(96)03920-9
  18. B. H. Chen, C. A. Miller, and P. R. Garrett, Langmuir, 14, 31 (1998) https://doi.org/10.1021/la970286u
  19. P. A. Kralchevsky, N. D. Denkov, P. D. Todorov, G. S. Marinov, G. Broze, and A. Mehreteab, Langmuir, 18, 7887 (2002) https://doi.org/10.1021/la020366k
  20. P. D. Todorov, G. S. Marinov, P. A. Kralchevsky, N. D. Denkov, P. Durbut, G. Broze, and A. Mehreteab, Langmuir, 18, 7896 (2002) https://doi.org/10.1021/la020367c
  21. N. C. Christov, N. D. Denkov, P. A. Kralchevsky, G. Broze, and A. Mehreteab, Langmuir, 18, 7880 (2002) https://doi.org/10.1021/la020365s
  22. S. R. Dungan, B. H. Tai, and N. I. Gerhardt, Colloids Surf. A: Phys. Chem. Eng. Asp., 216, 149 (2003) https://doi.org/10.1016/S0927-7757(02)00549-6
  23. P. D. Todorov, P. A. Kralchevsky, N. D. Denkov, G. Broze, and A. Mehreteab, J. Colloid Interface Sci., 245, 371 (2002) https://doi.org/10.1006/jcis.2001.8031
  24. C. L. Williams, A. R. Bhakta, and P. Neogi, J. Phys. Chem. B, 103, 3242 (1999) https://doi.org/10.1021/jp984448m
  25. O. Lopez, M. Cocera, R. Pons, N. Azemar, C. Lopez-Iglesias, E. Wehrli, J. L. Parra, and A. Maza, Langmuir, 15, 4678 (1999) https://doi.org/10.1021/la981473a
  26. B. J. Kim, S. S. Im, and S. G. Oh, Langmuir, 17, 565 (2001) https://doi.org/10.1021/la0012889
  27. K. C. Hoang and S. Mecozzi, Langmuir, 20, 7347 (2004) https://doi.org/10.1021/la049128a
  28. D. J. Prak, L. M. Abriola, W. J. Weber, and K. A. Bocskay, Environ. Sci. Technol., 34 476 (2000) https://doi.org/10.1021/es9903431
  29. J. C. Lim, C. A. Miller, and C. H. Yang, Colloids and Surfaces 66, 45 (1992) https://doi.org/10.1016/0166-6622(92)80119-M
  30. H. J. Ahn, S. G. Oh, and K. S. Choi, J. Korean Ind. Eng. Chem., 8, 881 (1997)
  31. T. Caceres and E. A. Lissi, J. Colloid Interface Sci., 97, 298 (1984) https://doi.org/10.1016/0021-9797(84)90297-2
  32. M. A. Chaiko, R. Nagarajan, and E. Ruckenstein, J. Colloid Interface Sci., 99, 168 (1984) https://doi.org/10.1016/0021-9797(84)90097-3
  33. J. C. Lim, Korean Chem. Eng. Res., 45, 219 (2007)