• Title/Summary/Keyword: ocean wave

Search Result 3,071, Processing Time 0.03 seconds

Design of Ship-type Floating LiDAR Buoy System for Wind Resource Measurement inthe Korean West Sea and Numerical Analysis of Stability Assessment of Mooring System (서해안 해상풍력단지 풍황관측용 부유식 라이다 운영을 위한 선박형 부표식 설계 및 계류 시스템의 수치 해석적 안정성 평가)

  • Yong-Soo, Gang;Jong-Kyu, Kim;Baek-Bum, Lee;Su-In, Yang;Jong-Wook, Kim
    • Journal of Navigation and Port Research
    • /
    • v.46 no.6
    • /
    • pp.483-490
    • /
    • 2022
  • Floating LiDAR is a system that provides a new paradigm for wind condition observation, which is essential when creating an offshore wind farm. As it can save time and money, minimize environmental impact, and even reduce backlash from local communities, it is emerging as the industry standard. However, the design and verification of a stable platform is very important, as disturbance factors caused by fluctuations of the buoy affect the reliability of observation data. In Korea, due to the nation's late entry into the technology, a number of foreign equipment manufacturers are dominating the domestic market. The west coast of Korea is a shallow sea environment with a very large tidal difference, so strong currents repeatedly appear depending on the region, and waves of strong energy that differ by season are formed. This paper conducted a study examining buoys suitable for LiDAR operation in the waters of Korea, which have such complex environmental characteristics. In this paper, we will introduce examples of optimized design and verification of ship-type buoys, which were applied first, and derive important concepts that will serve as the basis for the development of various platforms in the future.

Comparing Physical and Thermal Environments Using UAV Imagery and ENVI-met (UAV 영상과 ENVI-met 활용 물리적 환경과 열적 환경 비교)

  • Seounghyeon KIM;Kyunghun PARK;Bonggeun SONG
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.26 no.4
    • /
    • pp.145-160
    • /
    • 2023
  • The purpose of this study was to compare and analyze diurnal thermal environments using Unmanned Aerial Vehicles(UAV)-derived physical parameters(NDVI, SVF) and ENVI-met modeling. The research findings revealed significant correlations, with a significance level of 1%, between UAV-derived NDVI, SVF, and thermal environment elements such as S↑, S↓, L↓, L↑, Land Surface Temperature(LST), and Tmrt. In particular, NDVI showed a strong negative correlation with S↑, reaching a minimum of -0.52** at 12:00, and exhibited a positive correlation of 0.53** or higher with L↓ at all times. A significant negative correlation of -0.61** with LST was observed at 13:00, suggesting the high relevance of NDVI to long-wavelength radiation. Regarding SVF, the results showed a strong relationship with long-wave radiative flux, depending on the SVF range. These research findings offer an integrated approach to evaluating thermal comfort and microclimates in urban areas. Furthermore, they can be applied to understand the impact of urban design and landscape characteristics on pedestrian thermal comfort.

Use of Numerical Simulation for Water Area Observation by Microwave Radar (마이크로웨이브 레이더를 이용한 수역관측에 있어서의 수치 시뮬레이션 이용)

  • Yoshida, Takero;Rheem, Chang-Kyu
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.15 no.3
    • /
    • pp.208-218
    • /
    • 2012
  • Numerical simulation technique has been developed to calculate microwave backscattering from water surface. The simulation plays a role of a substitute for experiments. Validation of the simulation was shown by comparing with experimental results. Water area observations by microwave radar have been simulated to evaluate algorithms and systems. Furthermore, the simulation can be used to understand microwave scattering mechanism on the water surface. The simulation has applied to the various methods for water area observations, and the utilizations of the simulation are introduced in this paper. In the case of fixed radar, we show following examples, 1. Radar image with a pulse Doppler radar, 2. Effect of microwave irradiation width and 3. River observation (Water level observation). In addition, another application (4.Synthetic aperture radar image) is also described. The details of the applications are as follows. 1. Radar image with a pulse Doppler radar: A new system for the sea surface observation is suggested by the simulation. A pulse Doppler radar is assumed to obtain radar images that display amplitude and frequency modulation of backscattered microwaves. The simulation results show that the radar images of the frequency modulation is useful to measure sea surface waves. 2. Effect of microwave irradiation width: It is reported (Rheem[2008]) that microwave irradiation width on the sea surface affects Doppler spectra measured by a CW (Continuous wave) Doppler radar. Therefore the relation between the microwave irradiation width and the Doppler spectra is evaluated numerically. We have shown the suitable condition for wave height estimation by a Doppler radar. 3. River observation (Water level observation): We have also evaluated algorithms to estimate water current and water level of river. The same algorithms to estimate sea surface current and sea surface level are applied to the river observation. The simulation is conducted to confirm the accuracy of the river observation by using a pulse Doppler radar. 4. Synthetic aperture radar (SAR) image: SAR images are helpful to observe the global sea surface. However, imaging mechanisms are complicated and validation of analytical algorithms by SAR images is quite difficult. In order to deal with the problems, SAR images in oceanic scenes are simulated.

Warm Water Circulation and its Origin by Sea Level Fluctuation and Bottom Topography (해수면변화와 해저지형에 의한 난류수의 순환과 그 기원)

  • PARK Ig-Chan;OH Im Sang
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.28 no.5
    • /
    • pp.677-697
    • /
    • 1995
  • The analysis of long- period sea level variations with tidal record data around Korea, Japan, and Russia shows that about half of the variations are due to atmospheric influences. The sea level variation by water movements is the largest in the coasts along the Tsushima Current, and becomes smaller in the distant areas. It suggests that the sea level varications are related with the Tsushima Current. The effect of sea level variations to ocean circulation has been studied with a numerical model allowing barotropic sea level fluctuations, like the result with GCM (Semtner) model by Pang et al.(1993), the present model also shows that waters basically flow along isobaths over the last China Sea after geostyophic adjustment around Taiwan. However, barotropic sea level fluctuation makes the basic circulation in the Yellow Sea, which waters flow into the central Yellow Sea and out along the west coast of the Korean Peninsula. Besides this, barotropic sea level fluctuation makes long period waves over the shelf area as the Kuroshio varies. By the waves, the basic circulation in the Yellow Sea is disturbed, so that the flow pattern of oppositely flowing into the Yellow Sea along the west roast of the Korean Peninsula appears. In the Yellow Sea circulation, it seems that northwest winds strengthen the basic circulat ion In winter, and southeast winds strengthen the disturbed circulation in summer. Another point appeared by the long period wave is that the Tsushima Current possibly originates in different areas. There have been two opposing argues on the area in which the Tsushima Current originates the southwest sea of Kyushu Island and the adjacent sea of Taiwan. Through this study, we found that both of them seem to be important areas for the origin of the Tsushima Current, and one of them is possibly strengthened by long period waves. The long period waves given by the variation of the Kuroshio Current in the adjacent sea of Taiwan propagate to the Korea Strait as forced waves. The wave continuously propagates to the last Sea through the eastern channel, but reflects in the western channel due to bottom topography. The reflected waves propagate southwestward along the last China Sea as free waves and determine the sea level variations with forced waves.

  • PDF

A Study on the Micro-Topography Landscape Characteristics and Waterfront Landscape Style of Waterfront in Korean Jingyeong Landscape Painting (겸재 정선의 진경산수화에 나타난 수변의 미지형 경관 특성과 하경양식)

  • Kim, Yong-Hee;Kang, Young-Jo
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.47 no.1
    • /
    • pp.26-38
    • /
    • 2019
  • This study is based on the analysis of the characteristics of waterfront scenery. Recently, waterfront development has expanded residentially, commercially and into leisure space. In the development of the waterfront, it is necessary to apply designs suitable for urban and various other waterfront areas. In this study, the natural scenery of the waterfront was researched with respect to the Korean Jingyeong landscape paintings and the main elements of the scenery were analyzed. In this study, 105 painting of Korean Jingyeong landscapes paintings were selected for the analysis of the waterside scenery. The paintings of Jeong Seon were studied to categorize streams topographically into mountainous, upper, middle, lower, and ocean types. In addition, major micro-topography elements, which are 13 water image elements and 13 staffage elements were analyzed. The main waterfront landscape elements are divided into 13 types. The waterfalls were divided into long waterfalls, short waterfalls, cascading waterfalls, and other aspects considered were line stream, curve stream, multi-curve stream, pond, water surface, flow surface, wave surface, rock side, pile sandy side, sandy side. There are 13 kinds of staffage elements, include pine forest, pine trees, fir trees, bamboo trees, willow trees, broadleaf tree, villages, houses, gazebo, boat, bridges, and people. The waterfront landscape by a river area was explained according to each characteristic of the waterfront landscape and staffage, and their changes were analyzed in each area. The 105 paintings were divided into 35 pieces of mountainous streams, 9 upper streams, 5 middle streams, 35 lower streams, and 21 oceans, and the change of each waterfront landscape and staffage was analyzed. Based on the topographical analysis of the waterfront landscape and staffage, the results can be summarized into 5 types of the waterfront landscape. Based on the micro-topographical characteristics of the waterfront landscape styles are as follow. In the mountainous streams, long waterfall and deep forest type are apparent, which depicts deep mountain waterfall scenery, and a multi-stream forest is the scenery of a picnic in the mountains, which is a representative form of mountainous streams landscape. In the upper-middle stream, the water-surface and gazebo type is predominant. In the lower stream, the sandy-gazebo typ scenery is predominant and the sandy depiction is unique to lower stream landscape. Pile sandy-dock type is life scenes where human activity highlighted, is a representative form of the lower stream landscapes. The characteristic of the coastal landscape is the serpentine rock scenery on the beach and the wave-serpentine rock type that forms the main coastal landscape. The study aims to propose significant design elements for a natural waterfront landscape planning based on the analysis of landscape in the paintings of Jeong Seon.

Preliminary Study on the Development of a Platform for the Optimization of Beach Stabilization Measures Against Beach Erosion III - Centering on the Effects of Random Waves Occurring During the Unit Observation Period, and Infra-Gravity Waves of Bound Mode, and Boundary Layer Streaming on the Sediment Transport (해역별 최적 해빈 안정화 공법 선정 Platform 개발을 위한 기초연구 III - 단위 관측 기간에 발생하는 불규칙 파랑과 구속모드의 외중력파, 경계층 Streaming이 횡단표사에 미치는 영향을 중심으로)

  • Chang, Pyong Sang;Cho, Yong Jun
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.31 no.6
    • /
    • pp.434-449
    • /
    • 2019
  • In this study, we develop a new cross-shore sediment module which takes the effect of infra-gravity waves of bound mode, and boundary layer streaming on the sediment transport into account besides the well-known asymmetry and under-tow. In doing so, the effect of individual random waves occurring during the unit observation period of 1 hr on sediment transport is also fully taken into account. To demonstrate how the individual random waves would affect the sediment transport, we numerically simulate the non-linear shoaling process of random wavers over the beach of uniform slope. Numerical results show that with the consistent frequency Boussinesq Eq. the application of which is lately extended to surf zone, we could simulate the saw-tooth profile observed without exception over the surf zone, infra-gravity waves of bound mode, and boundary-layer streaming accurately enough. It is also shown that when yearly highest random waves are modeled by the equivalent nonlinear uniform waves, the maximum cross-shore transport rate well exceeds the one where the randomness is fully taken into account as much as three times. Besides, in order to optimize the free parameter K involved in the long-shore sediment module, we carry out the numerical simulation to trace the yearly shoreline change of Mang-Bang beach from 2017.4.26 to 2018.4.20 as well, and proceeds to optimize the K by comparing the traced shoreline change with the measured one. Numerical results show that the optimized K for Mang-Bang beach would be 0.17. With K = 0.17, via yearly grand circulation process comprising severe erosion by consecutively occurring yearly highest waves at the end of October, and gradual recovery over the winter and spring by swell, the advance of shore-line at the northern and southern ends of Mang-Bang beach by 18 m, and the retreat of shore-line by 2.4 m at the middle of Mang-Bang beach can be successfully duplicated in the numerical simulation.

A Study on the Neumann-Kelvin Problem of the Wave Resistance (조파저항에서의 Neumann-Kelvin 문제에 대한 연구)

  • 김인철
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.21 no.2
    • /
    • pp.131-136
    • /
    • 1985
  • The calculation of the resulting fluid motion is an important problem of ship hydrodynamics. For a partially immersed body the condition of constant pressure at the free surface can be linearized. The resulting linear boundary-value problem for the velocity potential is the Neumann-Kelvin problem. The two-dimensional Neumann-Kelvin problem is studied for the half-immersed circular cylinder by Ursell. Maruo introduced a slender body approach to simplify the Neumann-Kelvin problem in such a way that the integral equation which determines the singularity distribution over the hull surface can be solved by a marching procedure of step by step integration starting at bow. In the present pater for the two-dimensional Neumann-Kelvin problem, it has been suggested that any solution of the problem must have singularities in the corners between the body surface and free surface. There can be infinitely many solutions depending on the singularities in the coroners.

  • PDF

Optical Characteristic on the Growth of Centric Diatom, Skeletonema costatum (Grev.) Cleve Isolated from Jinhae Bay in Korea (진해만에서 분리한 중심목 규조류 Skeletonema costatum(Grev.) Cleve의 성장에 미치는 광학적 특성)

  • Oh, Seok-Jin;Kang, In-Seok;Yoon, Yang-Ho;Yang, Han-Soeb
    • Korean Journal of Environmental Biology
    • /
    • v.26 no.2
    • /
    • pp.57-65
    • /
    • 2008
  • The effects of light quality and irradiance on the growth of centric diatom, Skeletonema costatum (Jinhae Bay strain) were investigated in the laboratory. At 20$^{\circ}C$ and 30 psu, the irradiance-growth curve showed the maximum growth rate of 1.17 day$^{-1}$ with half-saturation photon flux density (PFD) (K$_s$) of 92.4 $\mu$mol photons $m^{-2}s^{-1}$, $\mu$=1.17 (I-5.28)/(I+81.8), (r=0.98), and a compensation PFD (I$_0$) was 5.28 $\mu$mol photons $m^{-2}s^{-1}$. The 10 equated to a depth of 3$\sim$5 m from March to May, 11 m in June and 4 m from July to September in Jinhae Bay. These responses suggested that irradiance at the depth near the surface layer in Jinhae Bay would provide favorable conditions for S. costatum. To assess the effects of light (i.e. wavelengths) on the growth, nine wave-lengths were used ranging from near ultraviolet to near-infrared supplied by light emitting diode. At an irradiance level of 25 $\mu$mol photons $m^{-2}s^{-1}$, S. costatum grew under wavelengths of 405, 470, 505, 525, 568 and 644 nm, but did not grow at 590 and 623 nm; whereas S. costatum grew at all wavelengths at 100 $\mu$mol photons $m^{-2}s^{-1}$. This implies that S. costatum is likely to grow well in enclosed water bodies where suspended particles absorbs most of the blue wavelengths, and dominated by yellow-orange wavelengths.

Numerical Analysis of the Grand Circulation Process of Mang-Bang Beach-Centered on the Shoreline Change from 2017. 4. 26 to 2018. 4. 20 (맹방해빈의 일 년에 걸친 대순환과정 수치해석 - 2017.4.26부터 2018.4.20까지의 해안선 변화를 중심으로)

  • Cho, Young Jin;Kim, In Ho;Cho, Yong Jun
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.31 no.3
    • /
    • pp.101-114
    • /
    • 2019
  • In this study, we carry out the numerical simulation to trace the yearly shoreline change of Mang-Bang beach, which is suffering from erosion problem. We obtain the basic equation (One Line Model for shoreline) for the numerical simulation by assuming that the amount of shoreline retreat or advance is balanced by the net influx of longshore and cross-shore sediment into the unit discretized shoreline segment. In doing so, the energy flux model for the longshore sediment transport rate is also evoked. For the case of cross sediment transport, the modified Bailard's model (1981) by Cho and Kim (2019) is utilized. At each time step of the numerical simulation, we adjust a closure depth according to pertinent wave conditions based on the Hallermeier's analytical model (1978) having its roots on the Shield's parameter. Numerical results show that from 2017.4.26 to 2017.10.15 during which swells are prevailing, a shoreline advances due to the sustained supply of cross-shore sediment. It is also shown that a shoreline temporarily retreats due to the erosion by the yearly highest waves sequentially occurring from mid-October to the end of October, and is followed by gradual recovery of shoreline as high waves subdue and swells prevail. It is worth mentioning that great yearly circulation of shoreline completes when a shoreline retreats due to the erosion by the higher waves occurring from mid-March to the end of March. The great yearly circulation of shoreline mentioned above can also be found in the measured locations of shoreline on 2017.4.5, 2017.9.7, 2017.11.7, 2018.3.14. However, numerically simulated amount of shoreline retreat or advance is more significant than the physically measured one, and it should be noted that these discrepancies become more substantial for the case of RUN II where a closure depth is sustained to be as in the most morphology models like the Genesis (Hanson and Kraus, 1989).

Accuracy Assessment of Tide Models in Terra Nova Bay, East Antarctica, for Glaciological Studies of DDInSAR Technique (DDInSAR 기반의 빙하연구를 위한 동남극 테라노바 만의 조위모델 정밀도 평가)

  • Han, Hyangsun;Lee, Joohan;Lee, Hoonyol
    • Korean Journal of Remote Sensing
    • /
    • v.29 no.4
    • /
    • pp.375-387
    • /
    • 2013
  • Accuracy assessment of tide models in polar ocean has to be performed to accurately analyze tidal response of glaciers by using Double-Differential Interferometric SAR (DDInSAR) technique. In this study, we used 120 DDInSAR images generated from 16 one-day tandem COSMO-SkyMed DInSAR pairs obtained for 2 years and in situ tide height for 11 days measured by a pressure type wave recorder to assess the accuracy of tide models such as TPXO7.1, FES2004, CATS2008a and Ross_Inv in Terra Nova Bay, East Antarctica. Firstly, we compared the double-differential tide height (${\Delta}\dot{T}$) for Campbell Glacier Tongue extracted from the DDInSAR images with that predicted by the tide models. Tide height (T) from in situ measurement was compared to that of the tide models. We also compared 24-hours difference of tide height ($\dot{T}$) from in situ tide height with that from the tide models. The root mean square error (RMSE) of ${\Delta}\dot{T}$, T and $\dot{T}$ decreased after the inverse barometer effect (IBE)-correction of the tide models, from which we confirmed that the IBE of tide models should be corrected requisitely. The RMSE of $\dot{T}$ and ${\Delta}\dot{T}$ were smaller than that of T. This was because $\dot{T}$ is the difference of tide height during temporal baseline of the DInSAR pairs (24 hours), in which the errors from mean sea level of the tide models and in situ tide, and the tide constituents of $S_2$, $K_2$, $K_1$ and $P_1$ used in the tide models were canceled. This confirmed that $\dot{T}$ and ${\Delta}\dot{T}$ predicted by the IBE-corrected tide models can be used in DDInSAR technique. It was difficult to select an optimum tide model for DDInSAR in Terra Nova Bay by using in situ tide height measured in a short period. However, we could confirm that Ross_Inv is the optimum tide model as it showed the smallest RMSE of 4.1 cm by accuracy assessment using the DDInSAR images.