• Title/Summary/Keyword: ocean forecast

Search Result 139, Processing Time 0.019 seconds

Application of Geostatistical Analysis Method to Detect the Direction of Sea Surface Warm Flows (해수면 난류수 유동방향 탐지를 위한 지구통계학적 분석기법 적용)

  • Choi, Hyun-Woo;Kim, Hyun-Wook
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.9 no.1
    • /
    • pp.168-178
    • /
    • 2006
  • In recent years, an ingress of mass jellyfish into cooling water intake system causes interruption of electric power production at the Uljin nuclear power plant. Therefore, monitering and forecast on the mass ingress of marine organisms are demanded as one of the early preventing measurements. Sea water movement is a major factor on the ingress of marine organisms like Moon jellyfish which has weak self-mobile ability. When sea surface flow direction adjacent to the Uljin is the northwest, the jellyfish on the Tsushima warm currents move to the Uljin power plant. To detect the direction of sea surface warm flows, the spatial range with $25km{\times}25km$ is set up and NOAA sea surface temperature(SST) data are collected in this area. For the statistical analysis, the SST data are made as GIS point data and geostatistical analysis of ArcGIS is used. Analyzing directional semivariogram, the anisotropy of the SST point data are calculated and warm flow direction is detected. This experimental results are expected to use as an element technology for the early warning system development of mass jellyfish ingress in power plant.

  • PDF

A Study on the Numerical Modeling of the Fish Behabior to the Model Net - Parameter Estimation in Numerical Model of Fish Behavior - (모형그물에 대한 어군행동의 수직 모델링에 관한 연구 - 어군행동을 나타내는 수치 모델의 파라메터 추정 -)

  • Lee, Byoung-Gee;Lee, Dae-Jae;Chang, Ho-Young
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.31 no.4
    • /
    • pp.307-325
    • /
    • 1995
  • IN order to gain a fundamental data for forecast or control of fish behavior and evaluated the feasibility of an application of the modeling technique to a field, in this paper a numerical model for describing the behavior of fishes in a water tank was presented. The parameters of the model were estimated by using the time-series data on the three-dimensional position of fishes and by applying the least squares algorithm. The estimated parameters were standardized to examine the variation of parameters according to the number of individuals and flow speed that the mean values of parameters were to be zero and their variances were to be one. The results obtained can be summarized as follows: (1) The standardized parameter $a^*$of propulsive force decreased according to increased the number of individuals and the flow speed. (2) The standardized parameter ${k_b}^*$ of interactive force increased according to increased the number of individuals, but decreased according to the flow speed. (3) The standardized parameter ${k_c}^*$ of schooling force increased according to │increased the number of individuals and the flow speed. (4) The standardized parameter │${k_w}^{+*}$│ of repulsive force against wall or bottom increased according to increased the number of individuals, but decreased according to the flow speed. (5) The standardized parameter │${k_w}^{-*}$│ of attractive force against wall or bottom was generally constant according to increased the number of individuals, but increased according to the flow speed. (6) The standardized parameter $\upsilon$ super(*) of damping force increased according to increased the number of individuals, but decreased according to the flow speed.

  • PDF

Predicting the hazard area of the volcanic ash caused by Mt. Ontake Eruption (일본 온타케 화산분화에 따른 화산재 확산 피해범위 예측)

  • Lee, Seul-Ki;Lee, Chang-Wook
    • Korean Journal of Remote Sensing
    • /
    • v.30 no.6
    • /
    • pp.777-786
    • /
    • 2014
  • Mt. Ontake is the second highest volcano in Japan. On 02:52 Universal Time Coordinated(UTC), 27th September 2014, Ontake volcano began on the large eruption without notice. Due to the recent eruption, 55 people were killed and around 70 people injured. Therefore, This paper performed numerical experiment to analyse damage effect of volcanic ash corresponding to Ontake volcano erupt. The forecast is based on the outputs of the HYSPLIT Model for volcanic ash. This model, which is based on the UM numerical weather prediction data. Also, a quantitative analysis of the ash dispersion area, it has been detected using satellite images from optical Communication, Ocean and Meterological Satellite-Geostationary Ocean Color Imager (COMS-GOCI) images. Then, the GOCI detected area and simulated ash dispersion area were compared and verified. As the result, the similarity showed the satisfactory result between the detected and simulated area. The concordance ratio between the numerical simulation results and the GOCI images was 38.72 % and 13.57 %, Also, the concordance ratio between the JMA results and the GOCI images was 9.05 % and 11.81 %. When the volcano eruptions, volcanic ash range of damages are wide more than other volcanic materials. Therefore, predicting ash dispersion studies are one of main way to reduce damages.

A Study on the Behaviour of Fish Schools in the Process of Catch of the Purse Seine Fishing Method (선망어법의 어획과정에 있어서 어군행동에 관한 연구)

  • Park, Jeong-Sik;Kim, Seok-Jong;Kim, Sam-Gon
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.33 no.3
    • /
    • pp.173-182
    • /
    • 1997
  • This study is a basic research in purse seine fishery : on the behaviour of fish schools of tilapia Tilapia mossambica in the process of catch of the purse seine fishing method. The experiment was carried out for the mackerel purse seine which using of power block by fishing fleet system in the near sea of Cheju Island and as a forecast in the near future on the purse seine fishing, using of triplex net winch by one boat system in the near sea of Norway. These model purse seines were made of the scale of 1/180 of its full scale. The model purse seine test on the escaping behaviour of fish school by gap, area reducing of gap and tension of purse line was carried out in the stagnant water of experimental water tank. Designing and testing for the model purse seines were based on the Tauti's law. The results obtained were as follows : 1. When the time for the completing of pursing was 20 minutes, average swimming speed of fish school through a gap was 9.71cm/sec for powerblock seine and 9.97cm/sec for triplex seine. 2. In the case of pursing time in actual value was 20minutes, at 50 percent of the pursing, swimming behaviour of fish school in purse seine was 10% to I section, 80% to II section, 10% to III sectional direction for powerblock seine and a similar tendency for triplex seine. 3. In the case of pursing time in actual value was 20 minutes, at the time of 10 minutes have proceeded since then, area reducing rate of gap of the seine in projected front view was 63.5% for powerblock seine and 67.5% for triplex seine. 4. In the case of pursing time in actual value was 20 minutes, escaping rate of fish school by gap in projected front view was 70% for powerblock seine and 30% for triplex seine. Maximum tension of purse line was about 8.1 tons for powerblock seine and about 8.3 tons for triplex seine.

  • PDF

Seasonal Circulation and Estuarine Characteristics in the Jinhae and Masan Bay from Three-Dimensional Numerical Experiments (3차원 수치모의 실험을 통한 진해·마산만의 계절별 해수순환과 염하구 특성)

  • JIHA KIM;BYOUNG-JU CHOI;JAE-SUNG CHOI;HO KYUNG HA
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.29 no.2
    • /
    • pp.77-100
    • /
    • 2024
  • Circulation, tides, currents, harmful algal blooms, water quality, and hypoxic conditions in Jinhae-Masan Bay have been extensively studied. However, these previous studies primarily focused on short-term variations, and there was limited detailed investigation into the physical mechanisms responsible for ocean circulation in the bays. Oceanic processes in the bays, such as pollutant dispersal, changes on a seasonal time scale. Therefore, this study aimed to understand how the circulation in Jinhae-Masan Bay varies seasonally and to examine the effects of tides, winds, and river discharges on regional ocean circulation. To achieve this, a three-dimensional ocean circulation model was used to simulate circulation patterns from 2016 to 2018, and sensitivity experiments were conducted. This study reveals that convective estuarine circulation develops in Jinhae and Masan Bays, characterized by the inflow of deep oceanic water from the Korea Strait through Gadeoksudo, while surface water flows outward. This deep water intrusion divides into northward and westward branches. In this study, the volume transport was calculated along the direction of bottom channels in each region. The meridional water exchange in the eastern region of Jinhae Bay is 2.3 times greater in winter and 1.4 times greater in summer compared to that of zonal exchange in the western region. In the western region of Jinhae Bay, the circulation pattern varies significantly by season due to changes in the balance of forces. During winter, surface currents flow southward and bottom currents flow northward, strengthening the north-south convective circulation due to the combined effects of northwesterly winds and the slope of the sea surface. In contrast, during summer, southwesterly winds cause surface seawater to flow eastward, and the elevated sea surface in the southeastern part enhances northward barotropic pressure gradient intensifying the eastward surface flow. The density gradient and southward baroclinic pressure gradient increase in the lower layer, causing a strong westward inflow of seawater from Gadeoksudo, enhancing the zonal convective circulation by 26% compared to winter. The convective circulation in the western Jinhae Bay is significantly influenced by both tidal current and wind during both winter and summer. In the eastern Jinhae Bay and Masan Bay, surface water flows outward to the open sea in all seasons, while bottom water flows inward, demonstrating a typical convective estuarine circulation. In winter, the contributions of wind and freshwater influx are significant, while in summer, the influence of mixing by tidal currents plays a major role in the north-south convective circulation. In the eastern Jinhae Bay, tidally driven residual circulation patterns, influenced by the local topography, are distinct. The study results are expected to enhance our understanding of pollutant dispersion, summer hypoxic events, and the abundance of red tide organisms in these bays.

Error Analysis of Three Types of Satellite-observed Surface Skin Temperatures in the Sea Ice Region of the Northern Hemisphere (북반구 해빙 지역에서 세 종류 위성관측 표면온도에 대한 오차분석)

  • Kang, Hee-Jung;Yoo, Jung-Moon
    • Journal of the Korean earth science society
    • /
    • v.36 no.2
    • /
    • pp.139-157
    • /
    • 2015
  • We investigated the relative errors of satellite-observed Surface Skin Temperature (SST) data caused by sea ice in the northern hemispheric ocean ($30-90^{\circ}N$) during April 16-24, 2003-2014 by intercomparing MODerate Resolution Imaging Spectroradiometer (MODIS) Ice Surface Temperature (IST) data with two types of Atmospheric Infrared Sounder (AIRS) SST data including one with the AIRS/Advanced Microwave Sounding Unit-A (AMSU) and the other with 'AIRS only'. The MODIS temperatures, compared to the AIRS/AMSU, were systematically up to ~1.6 K high near the sea ice boundaries but up to ~2 K low in the sea ice regions. The main reason of the difference of skin temperatures is that the MODIS algorithm used infrared channels for the sea ice detection (i.e., surface classification), while microwave channels were additionally utilized in the AIRS/AMSU. The 'AIRS only' algorithm has been developed from NASA's Goddard Space Flight Center (NASA/GSFC) to prepare for the degradation of AMSU-A by revising part of the AIRS/AMSU algorithm. The SST of 'AIRS only' compared to AIRS/AMSU showed a bias of 0.13 K with RMSE of 0.55 K over the $30-90^{\circ}N$ region. The difference between AIRS/AMSU and 'AIRS only' was larger over the sea ice boundary than in other regions because the 'AIRS only' algorithm utilized the GCM temperature product (NOAA Global Forecast System) over seasonally-varying frozen oceans instead of the AMSU microwave data. Three kinds of the skin temperatures consistently showed significant warming trends ($0.23-0.28Kyr^{-1}$) in the latitude band of $70-80^{\circ}N$. The systematic disagreement among the skin temperatures could affect the discrepancies of their trends in the same direction of either warming or cooling.

Analysis of the Synchronization between Global Dry Bulk Market and Chinese Container Market (글로벌 건화물 운임시장과 중국 컨테이너 운임시장 간의 동조성 분석)

  • Kim, Hyun-Sok;Chang, Myung-Hee
    • Journal of Navigation and Port Research
    • /
    • v.41 no.1
    • /
    • pp.25-32
    • /
    • 2017
  • The purpose of this investigation is to analyze the synchronization between the representative global freight index, the Baltic Dry bulk Index (BDI) and the China Container Freight Index (CCFI) with monthly data from 2000 to 2016. Using the non-stationarity of the business cycle that is able to include common trends, we employ the Engle-Granger 2 stage co-integration test and found no synchronization. On the contrary, we additionally estimated the causality between the markets and revealed the causality, which implies that the Chinese economy has a significant effect on the global market. The results of this empirical analysis demonstrate that the CCFI of China is appropriate for analyzing the shipping industry. In practice, this means that it is more appropriate to include CCFI in the global market outlook than use it as a substitute for the global freight rate index, the BDI. This is a case study of the synchronization of the economic fluctuations of the shipping industry. It suggests that the economic fluctuations of China need to be considered in the unstable global market forecast. In particular, this case applies to the fluctuations in the shipping industry synchronism and provides important results in scientific terms.

Seasonal Variation of Surface heat budget and Wind Stress Over the Seas Around the Korean Peninsula (한반도주위 해양에서 의 해면 열수지와 응력의 계절변화)

  • 강인식;김맹기
    • 한국해양학회지
    • /
    • v.29 no.4
    • /
    • pp.325-337
    • /
    • 1994
  • The distributions of heat and momentum fluxes on the surface over the oceans around the Korean Peninsula are obtained based on the surface-layer flux model of Kim and Kang (1994), and their seasonal variations are examined in the present study. the input data of the model is the oceanatmosphere data with a grid interval of 2$^{\circ}$ in longitude and latitude. The atmosphere data, which are the pressure, temperature, and specific humidity on the 1000 mb level for 3 year period of 1985∼1987, are obtained from the European center for Medium Range Forecast. The sea surface temperature (SST) is obtained from National Meteorological Center (NMC). The solar insolation and longwave radiation on the ocean surface are obtained, respectively, from the NASA satellite data and based on an emprical formula. It is shown from the net heat flux that the oceans near Korea lose heat to the atmosphere in January and October with the rates of 200∼ 400 Wm/SUP -2/ and 100 Wm/SUP -2/, respectively. But the oceans are heated by the atmosphere in April and July with about the same rate of 100 Wm/SUP -2/. The annualmean net heat flux is negative over the entire domain except the northern part of the Yellow Sea. The largest annual-mean cooling rate of about 120 Wm/SUP -2/ is appeared off the southwest of Japan. In the East Sea, the annual-mean cooling rate is 60∼90 Wm/SUP -2/ in the southern and northern parts and about 30 Wm/SUP -2/ in the middle part. The magnitude of wind stress in january is 3∼ 5 times bigger than those of the other months. As a result, the spatial pattern of annual-mean wind stress is similar to that of January. It is also shown that the annual-mean wind stress curl is negative. in the East China Sea and the South Sea,but it is positive in the northern part of the Yellow Sea.In the East sea,the stress curl is positive in the southeast and northern parts and negative in the northwestern part.

  • PDF

Vertical Measurement and Analysis of Meteorological Factors Over Boseong Region Using Meteorological Drones (기상드론을 이용한 보성 지역 기상 인자의 연직 측정 및 분석)

  • Chong, Jihyo;Shin, Seungsook;Hwang, Sung Eun;Lee, Seungho;Lee, Seung-Hyeop;Kim, Baek-Jo;Kim, Seungbum
    • Journal of the Korean earth science society
    • /
    • v.41 no.6
    • /
    • pp.575-587
    • /
    • 2020
  • Meteorological phenomena are observed by the Korea Meteorological Administration in a variety of ways (e.g., surface, upper-air, marine, ocean, and aviation). However, there are limits to the meteorological observation of the planetary boundary layer (PBL) that greatly affects human life. In particular, observations using a sonde or aircraft require significant observational costs in economic terms. Therefore, the goal of this study was to measure and analyze the meteorological factors of the vertical distribution of the see-land breeze among local meteorological phenomena using meteorological drones. To investigate the spatial distribution of the see-land breeze, a same integrated meteorological sensor was mounted on each drone at three different points (seaside, bottom of mountain, and mountainside), including the Boseong tall tower (BTT) at the Boseong Standard Weather Observatory (BSWO) in the Boseong region. Vertical profile observations for air temperature, relative humidity, wind direction, wind speed, and air pressure were conducted up to 400 m every 30 minutes from 1100 LST to 1800 LST on August 4, 2018. The spatial characteristics of meteorological phenomena for temperature, relative humidity, and atmospheric pressure were not shown at the four points. Strong winds (~8 m s-1) were observed from the midpoint (~100 m) at strong solar radiation hour, and in the afternoon the wind direction changed from the upper layer at the inland area to the west wind. It is expected that the analysis results of the lower atmospheric layer observed using the meteorological drone may help to improve the weather forecast more accurately.