DOI QR코드

DOI QR Code

Predicting the hazard area of the volcanic ash caused by Mt. Ontake Eruption

일본 온타케 화산분화에 따른 화산재 확산 피해범위 예측

  • Lee, Seul-Ki (National Institute of Meteorological Research, Korea Meteorological Administration) ;
  • Lee, Chang-Wook (National Institute of Meteorological Research, Korea Meteorological Administration)
  • Received : 2014.10.10
  • Accepted : 2014.12.09
  • Published : 2014.12.31

Abstract

Mt. Ontake is the second highest volcano in Japan. On 02:52 Universal Time Coordinated(UTC), 27th September 2014, Ontake volcano began on the large eruption without notice. Due to the recent eruption, 55 people were killed and around 70 people injured. Therefore, This paper performed numerical experiment to analyse damage effect of volcanic ash corresponding to Ontake volcano erupt. The forecast is based on the outputs of the HYSPLIT Model for volcanic ash. This model, which is based on the UM numerical weather prediction data. Also, a quantitative analysis of the ash dispersion area, it has been detected using satellite images from optical Communication, Ocean and Meterological Satellite-Geostationary Ocean Color Imager (COMS-GOCI) images. Then, the GOCI detected area and simulated ash dispersion area were compared and verified. As the result, the similarity showed the satisfactory result between the detected and simulated area. The concordance ratio between the numerical simulation results and the GOCI images was 38.72 % and 13.57 %, Also, the concordance ratio between the JMA results and the GOCI images was 9.05 % and 11.81 %. When the volcano eruptions, volcanic ash range of damages are wide more than other volcanic materials. Therefore, predicting ash dispersion studies are one of main way to reduce damages.

일본의 온타케 산은 일본에서 두 번째로 큰 규모의 화산으로, 2014년 9월 27일 02:52 UTC 에 예고 없는 대규모 분화가 발생했다. 이번 분화로 인해 최소 55명이 사망하였고, 70여 명의 부상자가 발생했다. 따라서 본 연구에서는 온타케 화산 분화에 따른 화산재 피해영향을 분석하기 위하여 화산재 확산 수치실험을 수행하였다. HYSLPLIT 확산모델과 UM 기상자료를 이용하여 화산재 확산 경로를 예측하였고, 화산재 확산 영역에 대한 정량적인 평가를 위해서 천리안 위성영상을 이용하여 화산재 확산 범위를 탐지하였다. 본 연구의 모의실험 결과와 GOCI 탐지 결과와의 비교를 통해 검증을 수행하였다. 그 결과, HYSPLIT 기반의 화산재 확산 예측결과와 GOCI 위성영상 간의 유사도가 높음을 알 수 있었다. 본 연구에서 수행한 화산재 확산 결과와 GOCI 간에는 38.72% 및 13.57%가 일치도가 계산되었고, JMA 결과와 GOCI는 9.05%와 11.81%가 일치하였다. 본 연구에서 수행한 바와 같이 화산재 확산 경로를 예측하는 연구는 그 피해를 감소할 수 있는 중요한 방법의 하나라고 판단할 수 있다. 따라서 화산 분화 시 기상 모델을 이용한 화산재 확산 수치실험은 시간에 따른 화산재 확산 분포를 이해하는데 유용한 기법으로 자리매김 할 것이며, 화산재 확산에 따른 피해 면적을 정량적으로 산출할 수 있는 중요한 기술이 될 것이다.

Keywords

References

  1. D'Amours R., 1998. Modelling the ETEX plume dispersion with the Canadian Emergency Response Model, Atmospheric Environment, 32: 4335-4341. https://doi.org/10.1016/S1352-2310(98)00182-4
  2. Draxler R.R., and G.D. Hess, 1998. Description of the Hysplit-4 modeling system, NOAA Technical Memorandum ERL ARL-224.
  3. Escudero M., A. Stein, R.R. Draxler, X. Querol, A. Alastuey, S. Castillo, and A. Avila, 2006. Determination of the contribution of northern Africa dust source areas to PM10 concentrations over the central Iberian Peninsula using the Hybrid Single-Particle Lagrangian Integrated Trajectory model (HYSPLIT) model, Journal of geophysical research, 111:D06210, doi:10.1029/2005JD006395.
  4. Global Volcanism Program(GVP), http://www.volcano.si.edu/.
  5. Heffter J.L., and B.J.B Stunder, 1993. Volcanic ash forecast transport and dispersion (VAFTAD) model, Weather and forecasting, 8: 533-541. https://doi.org/10.1175/1520-0434(1993)008<0533:VAFTAD>2.0.CO;2
  6. Kinoshitaa N., S. Keisuke, S. Kimikazu, K. Jun-ichi, I. Satoshi, N. Tomohiro, W. Ying-Shee, S. Yukihiko, H. Koji, T. Tsutomu, S. Masanori, and Y. Takeyasu, 2011. Assessment of individual radionuclide distributions from the Fukushima nuclear accident covering central-east Japan, pros. National Acad. Scien. Amer., 108(49): 19526-19529. https://doi.org/10.1073/pnas.1111724108
  7. Iwasaki, T., T. Maki, and K. Katayama, 1998. Tracer transportmodel at Japanmeteorological agency and its application to the ETEX data, Atmos. Environ., 32: 4285-4295. https://doi.org/10.1016/S1352-2310(98)00171-X
  8. Japan Meteorological Agency(JMA), http://www.jma.go.jp/en/volcano/.
  9. Jones A., D. Thomson, M. Hort, and B. Devenish, 2007. The U.K. Met office's next-generation atmospheric dispersion model, NAME III. In: Borrego, C., Norman, A.-L. (Eds.), Air Pollution Modeling and Its Application XVII. Springer, 580-589.
  10. Lee S.H., and S.H. Yun, 2011. Impact of Meteorological Wind Fields Average on Predicting Volcanic Tephra Dispersion of Mt. Baekdu, Jour. Korean Earth Science Society, 32(4): 360-372. https://doi.org/10.5467/JKESS.2011.32.4.360
  11. Lee S.K., G.H. Ryu, E.H. Hwang, J.K. Choi, and C.W. Lee, 2014. Predicting the extent of the volcanic ash dispersion using GOCI image and HYSPLIT model, Korean Jour. Remote sensing, 30(2): 303-314. https://doi.org/10.7780/kjrs.2014.30.2.12
  12. Mastin L.G., M. Guffanti, R. Servranckx, P. Webley, S. Barsotti, K. Dean, A. Durant, J.W. Ewert, A. Neri, W.I. Rose, D. Schneider, L. Siebert, B. Stunder, G. Swanson, A. Tupper, A. Volentik, and C.F. Waythomas, 2009. A multidisciplinary effort to assign realistic source parameters to models of volcanic ash-cloud transport and dispersion during eruptions, Journal of Volcanology and Geothermal Research, 186: 10-21. https://doi.org/10.1016/j.jvolgeores.2009.01.008
  13. Miller T.P., and T.J. Casadevall, 2000. Volcanic Ash Hazards to Aviation. In: Sigurdsson, H.,Houghton, B.F., McNutt, S.R., Rymer, H., Stix, J. (Eds.), Encyclopedia of Volcanoes. Academic Press, 915-930.
  14. Pavolonis, M.J., W.F. Feltz, A.K. Heidinger, and G.M. Gallina, , 2006. A daytime complement to the reverse absorption technique for improved automated detection of volcanic ash, Journal of atmospheric and oceanic technology, 23: 1422-1444. https://doi.org/10.1175/JTECH1926.1
  15. Picchiani, M., M. Chini, S. Corradini, L. Merucci, P. Sellitto, F. Del Frate, and S. Stramondo, 2011. Volcanic ash detection and retrievals using MODIS data by means of neural networks, Atmospheric measurement techniques, 4: 2619-2631. https://doi.org/10.5194/amt-4-2619-2011
  16. Prata, A.J., 1989. Observations of volcanic ash clouds in the 10-12um window using AVHRR/2 data, International journal of Remotesensing, 10: 751-761. https://doi.org/10.1080/01431168908903916
  17. Prata, A.J., 1989. Infrared radiative transfer calculations for volcanic ash clouds, Geophysical research letters, 14(11): 1293-1296.
  18. Robert, W., F. Luke, G. Harold, H. Andrew, and P. Eric, 2002. Automated volcanic eruption detection using MODIS, Remote sensing of environment 82: 135-155. https://doi.org/10.1016/S0034-4257(02)00030-5
  19. Ryalla D.B., and R.H. Maryona, 1998. Validation of the UK Met. Office's name model against the ETEX dataset, Atmospheric Environment, 32(24): 4265-4276. https://doi.org/10.1016/S1352-2310(98)00177-0
  20. Sandu I., F. Bompay, and S. Stefan, 2003. Validation of atmospheric dispersion models using ETEX data. International Journal of Environment and Pollution, 19(4): 367-389. https://doi.org/10.1504/IJEP.2003.004315
  21. Shimbori, T., Y. Aikawa, and N. Seino, 2009. Operational implementation of the tephra fall forecast with the JMA mesoscale tracer transport model, CAS/JSCWGNE Res Act Atmos Ocean Model, 39: 5.29-5.30.
  22. Tokyo VAAC, http://ds.data.jma.go.jp/svd/vaac/data/index.html.
  23. Witham C.S., M.C. Hort, R. Potts, R. Servranckx, P. Husson, and F. Bonnardot 2007. Comparison of VAAC atmospheric dispersion models using the 1 November 2004 Grimsvotn eruption, Meteorol. Appl., 14: 27-38. https://doi.org/10.1002/met.3
  24. Zhang, Z., and Q. Chen, 2007. Comparison of the Eulerian and Lagrangian methods for predicting particle transport in enclosed spaces, Atmospheric Environment, 41: 5236-5248. https://doi.org/10.1016/j.atmosenv.2006.05.086

Cited by

  1. Landslide Susceptibility Mapping and Comparison Using Decision Tree Models: A Case Study of Jumunjin Area, Korea vol.10, pp.10, 2018, https://doi.org/10.3390/rs10101545
  2. 지진·화산 연구에 대한 위성영상 활용 vol.34, pp.6, 2018, https://doi.org/10.7780/kjrs.2018.34.6.4.1