• Title/Summary/Keyword: ocean conditions

Search Result 2,649, Processing Time 0.029 seconds

Resonant Characteristics in Rectangular Harbor with Narrow Entrance (2.Effects of Entrance Energy Loss) (개구부가 좁은 직사각형 항만의 공진 특성 (2.항입구 에너지 손실의 영향))

  • 정원무;박우선;서경덕;채장원
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.11 no.4
    • /
    • pp.216-230
    • /
    • 1999
  • A Galerkin finite element model for the analysis of harbor oscillation has been developed based on the extended mild-slope equation. Infinite elements are used to accomodate the radiation condition at infinity and joint elements to treat the matching conditions at the harbor entrance which include the energy loss due to flow separation. The numerical tests for rectangular harbors with fully or partially open entrances show that the energy loss at the harbor entrance considerably reduces the the amplification ratios at the innermost parts of the harbors and that the amplification ratios decrease considerably with increasing incident wave heights and jet lengths at the harbor entrance. Application of the model to the Gamcheon harbor show that when the incident wave amplitude is small the amplification ratios rather increase when the entrance energy loss is included than when ignored because of the shift of the resonance periods. Even though the entrance energy loss was insignificant for the measured long-period incident waves, it would be of great importance if the incident waves were large as in the attack of tsunamis. The resonance period of the Helmholtz mode at the Gamcheon Harbor was calculated to be 31 minutes, which agrees well with the measured one between 27 and 33.3 minutes. The measured resonance periods between 9.4 and 12.1 minutes and 5.2 and 6.2 minutes were also calculated by the numerical model as 10.4 minutes and 6.6 or 5.6 minutes, indicating good performance of the model. On the other hand, it was shown that a variety of oscillation modes exists in the Gamcheon Harbor and lateral resonances of considerable amplification ratios also exist at the periods of 3.6 and 1.6 minutes as in the Young-II Bay.

  • PDF

A Study of the Wave Control Characteristics of the Permeable Submerged Breakwater using VOF Method in Irregular Wave Fields (불규칙파동장에 있어서 VOF법에 의한 투과성잠제의 파랑제어 특성에 관한 연구)

  • Kim Do Sam;Lee Kwang Ho;Yoo Hyun Sang;Kim Chang Hoon;Son Byoung Kyu
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.16 no.3
    • /
    • pp.121-129
    • /
    • 2004
  • The different types of coastal souctures have been constructed for the protection of coastal region from the incident waves. Among them. the permeable submerged breakwater has been widely used as a wave dissipater and sediment transport controller because of its excellent advantages in scenery effects, construction efficiency and environment aspects. This study numerically investigated the characteristics of wave energy variations and transmission coefficient at the rear of the permeable submerged breakwater installed in the irregular wave field. To analyze it's performance numerically, a two-dimensional numerical wave flume based on VOF method was used. A frequency spectral analysis showed that the spectral peak moved to the short-period in the one-row submerged breakwater, and the wave energy was distributed evenly for the whole period in the two-row submerged breakwater in the case of breaking on the submerged breakwater. The spectral peak was shown to be converged within the significant wave period at the rear of the permeable submerged breakwater in the case of non-breaking conditions. From the result of transmission coefficients analysis. it was confirmed that a considerable quantity of wave energy was transmitted to the rear of the permeable submerged breakwater in the case of non-breaking rather than breaking.

Evaluation of Effective Working Days in a Harbor Considering Harbor Resonance and Moored Ship Motion (항만공진주기와 선박동요량을 고려한 항만가동율 산정)

  • Kwak, Moonsu;Moon, Yongho
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.27 no.1
    • /
    • pp.14-24
    • /
    • 2015
  • This study proposed an estimation method of allowable wave height for loading and unloading of the ship and evaluation of effective working days considering moored ship motion that is affected by sip sizes, mooring conditions, wave periods and directions. The method was examined validity by comparison with wave field data at pier $8^{th}$ in Pohang New Harbor. The wave field data obtained with wave height of 0.10~0.75 m and wave period of 7~13 s in ship sizes of 800~35,000 ton when a downtimes have occurred. On the other hand, the results of allowable wave height for loading and unloading of the ship in this method have obtained with wave heights of 0.19~0.50 m and wave periods of 8~12 s for ship sizes of 5,000, 10,000 and 30,000 ton. Thus this method well reproduced the field data respond to various a ship sizes and wave periods. And the results of this in Korea are didn't respond to various the ship sizes and wave periods, and we h method tended to decrease in 16~62 percent when have considered long wave, and it is decreased in 0~46 percent when didn't consider long wave than design standards in case of the ship sizes of 5,000~30,000 ton, wave period of 12 s and wave angle of $75^{\circ}$. The allowable wave heights for loading and unloading of the ship proposed by design standards in Korea have found that overestimated on smaller than 10,000 ton. On the other hand, the rate of effective working days considering ship motion at pier $8^{th}$ in Pohang New Harbor reduced in 6.5 percent when compare with the results without considering ship motion.

Studies on Fish Distribution Characteristics Using a Scientific Echo Sounder in the Yellow Sea (음향조사에 의한 황해 주요어족생물의 분포특성에 관한 연구)

  • 황두진;신형효;강돈혁
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.38 no.2
    • /
    • pp.140-148
    • /
    • 2002
  • The primary goal of this study is to determine the distribution characteristics using a scientific echo sounder in the Yellow Sea west of South Korea. The survey was carried out between 33$^{\circ}$00'N~37$^{\circ}$00'N latitude and 124$^{\circ}$00'E~126$^{\circ}$00'E longitude during the months of May and August, 1999 and April, 2000. The ships used in this survey were the R/V Chung-kyeong(G/T 300) and R/V Dong-baek(G/T 1,050) of Yeosu National University. The results obtained are as follows : 1. From the oceanographic data the Yellow Sea were divided into three sea areas which were the western waters of Chejudo, Mokpo and Kunsan. The oceanographic conditions were different in each of these three areas and the western waters of Chejudo were higher about 1~5$^{\circ}C$ more than the western waters of Gunsan. Generally, thermoclines were presented clearly in all three areas, but more so in August than in May according to seasons. 2. The horizontal distribution of S$_{A}$(area backscattering coefficient per unit area) value is that the western sea waters of Chejudo area are higher than that of the western sea waters of Mokpo and Gunsan. 3. The vortical distribution of S$_{A}$ value varies with thermocline that the harder thermocline is, the higher the S$_{A}$ value is. 4. The S$_{A}$ values on the types of biomass distribution are different with frequency. At the 38kHz, the demersal schools have higher values than the pelagic schools. At the 120kHz, the pelagic schools have higher values than the demersal schools.

The characteristics of the flow field around canvas kite using the CFD (CFD를 이용한 범포 주위의 유동장 특성)

  • Bae, Bong-Seong;Bae, Jae-Hyun;An, Heui-Chun;Park, Seong-Wook;Park, Chang-Doo;Jeong, Eui-Cheol
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.42 no.3
    • /
    • pp.169-178
    • /
    • 2006
  • This research aims at establishing the fundamental characteristics of the kite through the analysis of the flow field around various types of kites. The approach of this study were adopted for the analysis; visualization by CFD(computational fluid dynamics). Also, the lift/drag and PIV(particle image velocimetry) tests of kites had been performed in our previous finding. For this situation, models of canvas kite were designed by solidworks(design program) for the CFD test using the same conditions as in the lift/drag tests. And we utilized FloWorks as a CFD analysis program. The results obtained from the above approach are summarized as follows: According to comparison of the measured and analyzed results from mechanical tests, PIV and CFD test, the results of all test were similar. The numerical results of lift-coefficient and drag-coefficient were 5-20% less than those of the tests when attack angle is $10^{\circ},\;20^{\circ}\;and\;30^{\circ}$. In particular, it showed the 20% discrepancy at $40^{\circ}$. The numerical results of the ratio of drag and lift were 8-13% less than those of the tests at $10^{\circ}$ and 10% less than those of the tests at $20^{\circ},\;30^{\circ}\;and\;40^{\circ}$. Pressure distribution gradually became stable at $10^{\circ}$. In particular, the rectangular and triangular types had the centre of the high pressure field towards the leading edge and the inverted triangular type had it towards the trailing edge. The increase of the attack angle resulted in the eddy in order of the rectangular, triangular and inverted triangular type. The magnitude of the eddy followed the same order. The effect of edge-eddy was biggest in the triangular type followed by the rectangular and then the inverted triangular type. The action point of dynamic pressure as a function of the attack angle was close to the rear area of the model with the small attack angle, and with large attack angle, the action point was close to the front part of the model.

Effects of Temperature and Stocking Density on the Ammonia Excretion Rate of Red Seabream, Pagrus major

  • Harwanto, Dicky;Oh, Sung-Yong;Kim, Chong-Kwan;Gultom, Victor David Nico;Jo, Jae-Yoon
    • Ocean and Polar Research
    • /
    • v.32 no.1
    • /
    • pp.63-71
    • /
    • 2010
  • An experiment was conducted to investigate the effects of temperature and stocking density on daily patterns and rates of total ammonia nitrogen (TAN) excretion in juvenile red seabream Pagrus major (mean body weight: 29.0 g) under fasting and feeding conditions. Fish were acclimated over 7 days under four different temperatures (10, 15, 20, and $25^{\circ}C$) and at two different densities (5.5 and $11.0\;kg\;m^{-3}$). Each treatment had three replicates and a total of 216 fish were used. After 72 hours starvation, endogenous TAN excretion was measured for each temperature and density. To investigate exogenous TAN excretion, fish were handfed a commercial diet containing 51.6% crude protein twice a day for 7 days, at 08:00 and 16:00. Water was sampled from both inlets and outlets of chambers every 2 hours over a 24 hour period. Both endogenous and exogenous TAN excretion increased with increases in temperature and density (P<0.05). Mean daily endogenous TAN excretion rates at 10, 15, 20, and $25^{\circ}C$ were 88.8, 101.1, 125.0, and $143.3\;mg\;TAN\;kg^{-1}\;d^{-1}$ at low density, and 105.2, 119.2, 141.5, and $168.8\;mg\;TAN\;kg^{-1}\;d^{-1}$ at high density, respectively. Mean daily exogenous TAN excretion rates at 10, 15, 20, and $25^{\circ}C$ were 343.5, 403.7, 535.7, and $601.7\;mg\;TAN\;kg^{-1}\;d^{-1}$ at low density, and 391.9, 479.7, 611.9, and $683.4\;mg\;TAN\;kg^{-1}\;d^{-1}$ at high density, respectively. The exogenous TAN excretion rate peaked 10~12 hours after the first feeding under all temperatures and densities. The TAN loss for ingested nitrogen increased with increases in temperature and density (P<0.05), ranging from 27.9 to 50.1% at low density and 31.7 to 56.9% at high density. This study provides empirical data for estimating ammonia excretion and managing the culture of red seabream under the given temperatures and densities.

Development of the Speed Limit Model for Harbour and Waterway(I) - Considerations Discrimination for Speed Limit Decision - (항만과 수로의 제한속력 설정 모델 개발에 관한 연구(I) - 제한속력 설정을 위한 고려요소 식별 -)

  • Kim, Deug-Bong;Jeong, Jae-Yong;Park, Jin-Soo;Park, Young-Soo
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.21 no.2
    • /
    • pp.171-178
    • /
    • 2015
  • This research is the first research on developing the speed limit select model and also it is the result of the research on the importance of each element and consideration factors when selecting the speed limit. For the consideration factor discrimination and calculation of the importance, the delphi method and AHP method was used. The delphi survey was processed through third round survey, 5 high consideration factor(Level 1) and 23 low consideration factor(Level 2) was discriminated. During the process of the third delphi survey, when the CVR cost was in the range between 0.4~1.0 it was treated as the consideration factor when selecting the speed limit and less than 0.4 cost was eliminated. In the process of the second delphi survey, 33 consideration factors were discriminated but was reordered into 23 categories through the third survey. Based on the 23 categories earned through the third delphi analysis, the AHP survey was processed. The result of the AHP survey was that out of the importance of the 5 high consideration factor(Level 1), the traffic condition was evaluated as the number one factor and the vessel condition, waterway condition, environment condition, supporting condition and etc. conditions were evaluated following the traffic condition. Out of the 23 low consideration factor(Level 2) consideration, the visibility was evaluated to be the first important and the performance of the vessel steering, objective factors within the harbor, amount of traffic and density, distance between the passing vessel, speed of the steering capacity and tidal current were the following evaluated factors.

A Study on the Hull Acceleration Analysis of Car Ferry Ship for Securing Safety Evaluation (고박안전성 평가를 위한 카페리선박의 선체가속도 분석에 관한 연구)

  • Yu, Yong Ung;Lee, Yun-Sok
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.26 no.6
    • /
    • pp.587-593
    • /
    • 2020
  • The securing safety of ferry ships on the domestic coast is evaluated by comparing the external force applied and the securing device based on the cargo weight and hull acceleration that can exist at the loaded position. The hull acceleration based on the domestic standard, which is the basis for securing safety evaluation, is applied without reflecting the characteristics of the ship and the sailing conditions. In this study, a total of 12 acceleration measurements were performed at four points of the hull of a ship with a DWT 6,800 ton class 15.5 knots passing through Busan-Jeju to analyze the hull acceleration of the domestic coastal ferry ship. Data were collected for the buoy. For a theoretical comparative analysis of the limited measurement results, the response amplitude operator (RAO) was analyzed through frequency-response analysis by numerical simulation, and acceleration analysis for the four points was performed using the RAO results. Based on the acceleration comparison, differences in the degree of each position were observed, but in the case of the Y-axis acceleration, the analysis was 1.81 m/s2, and the measurement was 1.47 m/s2. The analyzed simulation result was as high as 0.34 m/s2. Moreover, analysis was performed at 22 % level, and measurement at 18 % level.

A Study on the Heat Flow Analysis of Infra-Red Signature Suppression System for Naval Ship (함정 적외선 신호저감 장치의 열 유동해석 연구)

  • Yoon, Seok-Tae;Cho, Yong-Jin;Ko, Dae-Eun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.11
    • /
    • pp.740-746
    • /
    • 2017
  • Infrared signatures emitted from hot exhaust gases generated by the internal combustion engine and generator of naval ships and from the metal surfaces of the funnel have become the targets of infrared homing missiles, which is the main cause of a reduced survivability of naval ships. The infrared signatures from the exhaust gas and the metal surface of a funnel can be reduced by installing an infrared signature suppression (IRSS) system on a ship. The IRSS system consists of three parts: an eductor that generates turbulent flow of the exhaust gas, a mixing tube that mixes the exhaust gas with ambient air, and a diffuser that forms an air film using the pressure difference between the inside and outside air. As a basic study to develop an IRSS system using domestic technology, this study analyzed the model test conditions of an IRSS system developed by an overseas engineering company and installed on a domestic naval ship, and a numerical heat-flow analysis was conducted based on the results of the aforementioned analysis. Numerical heat-flow analysis was performed using a commercial numerical-analysis application, and various turbulence models were considered. As a result, the temperature and velocity of the exhaust gas at the educator inlet and diffuser outlet and that of the metal surface of the diffuser were measured, and found to agree well with the measurement results of the model test.

Estimation of Leg Collision Strength for Large Wind Turbine Installation Vessel (WTIV) (대형 해상풍력발전기 설치 선박(WTIV) Leg구조의 충돌 강도평가)

  • Park, Joo-Shin;Ma, Kuk-Yeol;Seo, Jung-Kwan
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.26 no.5
    • /
    • pp.551-560
    • /
    • 2020
  • Recently, the offshore wind power generator market is expected to grow significantly because of increased energy demand, reduced dependence on fossil fuel-based power generation, and environmental regulations. Consequently, wind power generation is increasing worldwide, and several attempts have been made to utilize offshore wind power. Norway's Petroleum Safety Authority (PSA) requires a leg-structure design with a collision energy of 35 MJ owing to the event of a collision under operation conditions. In this study, the results of the numerical analysis of a wind turbine installation vessel subjected to ship collision were set such that the maximum collision energy that the leg could sustain was calculated and compared with the PSA requirements. The current leg design plan does not satisfy the required value of 35 MJ, and it is necessary to increase the section modulus by more than 200 % to satisfy the regulations, which is unfeasible in realistic leg design. Therefore, a collision energy standard based on a reasonable collision scenario should be established.