• Title/Summary/Keyword: ocean climate change

Search Result 500, Processing Time 0.026 seconds

A Decline of Observed Daily Peak Wind Gusts with Distinct Seasonality in Australia, 1941-2016

  • Cesar Azorin-Molina;Tim R. McVicar;Jose A. Guijarro;Blair Trewin;Andrew J. Frost;Gangfeng Zhang;Lorenzo Minola;Seok-Woo Son;Kaiqiang Deng;Deliang Chen
    • Journal of Climate Change Research
    • /
    • v.34 no.8
    • /
    • pp.3103-3127
    • /
    • 2021
  • Wind gusts represent one of the main natural hazards due to their increasing socioeconomic and environmental impacts on, for example, human safety, maritime-terrestrial-aviation activities, engineering and insurance applications, and energy production. However, the existing scientific studies focused on observed wind gusts are relatively few compared to those on mean wind speed. In Australia, previous studies found a slowdown of near-surface mean wind speed, termed "stilling," but a lack of knowledge on the multidecadal variability and trends in the magnitude (wind speed maxima) and frequency (exceeding the 90th percentile) of wind gusts exists. A new homogenized daily peak wind gusts (DPWG) dataset containing 548 time series across Australia for 1941-2016 is analyzed to determine long-term trends in wind gusts. Here we show that both the magnitude and frequency of DPWG declined across much of the continent, with a distinct seasonality: negative trends in summer-pring-autumn and weak negative or nontrending (even positive) trends in winter. We demonstrate that ocean-atmosphere oscillations such as the Indian Ocean dipole and the southern annular mode partly modulate decadal-scale variations of DPWG. The long-term declining trend of DPWG is consistent with the "stilling" phenomenon, suggesting that global warming may have reduced Australian wind gusts.

Analysis of the Reason for Occurrence of Large-Height Swell-like Waves in the East Coast of Korea (우리나라 동해안 너울성 고파의 발생원인 분석)

  • Oh, Sang-Ho;Jeong, Weon-Mu;Lee, Dong-Young;Kim, Sang-Ik
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.22 no.2
    • /
    • pp.101-111
    • /
    • 2010
  • Characteristics of large-height swell-like waves that repeatedly occurred on the Korean East Coast in winter season were analyzed by using the wave observation data and the meteorological data. Based on the results of the data analysis, it was demonstrated that the swell-like waves have been generated due to the long-lasting strong northeasters in the East Sea, which were formed as a result of the low pressure trough in the vicinity of the extratropical low pressure system that advanced to East Sea from the China inland with decreasing its central pressure. Among the recently occurred events of the swell-like waves, the characteristics of the two events in October 2005 and 2006 were predominantly wind waves. Meanwhile, the one in February 2008 seems to be occurred by the initial wave growth due to wind waves followed by the secondly increase of the wave height due to longer-period swell.

Impacts of Ocean Currents on the South Indian Ocean Extratropical Storm Track through the Relative Wind Effect

  • Hyodae Seo;Hajoon Song;Larry W. O'Neill;Matthew R. Mazloff;Bruce D. Cornuelle
    • Journal of Climate Change Research
    • /
    • v.34 no.22
    • /
    • pp.9093-9113
    • /
    • 2021
  • This study examines the role of the relative wind (RW) effect (wind relative to ocean current) in the regional ocean circulation and extratropical storm track in the south Indian Ocean. Comparison of two high-resolution regional coupled model simulations with and without the RW effect reveals that the most conspicuous ocean circulation response is the significant weakening of the overly energetic anticyclonic standing eddy off Port Elizabeth, South Africa, a biased feature ascribed to upstream retroflection of the Agulhas Current (AC). This opens a pathway through which the AC transports the warm and salty water mass from the subtropics, yielding marked increases in sea surface temperature (SST), upward turbulent heat flux (THF), and meridional SST gradient in the Agulhas retroflection region. These thermodynamic and dynamic changes are accompanied by the robust strengthening of the local low-tropospheric baroclinicity and the baroclinic wave activity in the atmosphere. Examination of the composite life cycle of synoptic-scale storms subjected to the high-THF events indicates a robust strengthening of the extratropical storms far downstream. Energetics calculations for the atmosphere suggest that the baroclinic energy conversion from the basic flow is the chief source of increased eddy available potential energy, which is subsequently converted to eddy kinetic energy, providing for the growth of transient baroclinic waves. Overall, the results suggest that the mechanical and thermal air-sea interactions are inherently and inextricably linked together to substantially influence the extratropical storm tracks in the south Indian Ocean.

Climate Change-induced High Temperature Stress on Global Crop Production (기후변화로 인한 작물의 고온 스트레스 전망)

  • Lee, Kyoungmi;Kang, Hyun-Suk;Cho, ChunHo
    • Journal of the Korean Geographical Society
    • /
    • v.51 no.5
    • /
    • pp.633-649
    • /
    • 2016
  • Exposure to high temperatures during the reproductive period of crops decreases their productivity. The Intergovernmental Panel on Climate Change's (IPCC) fifth Assessment Report predicts that the frequency of high temperatures will continue to increase in the future, resulting in significant impacts on the world's food supply. This study evaluate climate change-induced heat stress on four major agricultural crops (rice, maize, soybean, and wheat) at a global level, using the coupled atmosphere-ocean model of Hadley Centre Global Environmental Model version 2 (HadGEM2-AO) and FAO/IIASA Global Agro-Ecological Zone (GAEZ) model data. The maximum temperature rise ($1.8-3.5^{\circ}C$) during the thermal-sensitive period (TSP) from the baseline (1961-1990) to the future (2070-2090) is expected to be larger under a Representative Concentration Pathway (RCP) 8.5 climate scenario than under a RCP2.6 climate scenario, with substantial heat stress-related damage to productivity. In particular, heat stress is expected to cause severe damage to crop production regions located between 30 and $50^{\circ}N$ in the Northern Hemisphere. According to the RCP8.5 scenario, approximately 20% of the total cultivation area for all crops will experience unprecedented, extreme heat stress in the future. Adverse effects on the productivity of rice and soybean are expected to be particularly severe in North America. In Korea, grain demands are heavily dependent on imports, with the share of imports from the U.S. at a particularly high level today. Hence, it is necessary to conduct continuous prediction on food security level following the climate change, as well as to develop adaptation strategy and proper agricultural policy.

  • PDF

Climate Variability and Its Effects on Major Fisheries in Korea

  • Kim, Su-Am;Zhang, Chang-Ik;Kim, Jin-Yeong;Oh, Jae-Ho;Kang, Su-Kyung;Lee, Jae-Bong
    • Ocean Science Journal
    • /
    • v.42 no.3
    • /
    • pp.179-192
    • /
    • 2007
  • Understanding in climate effects on marine ecosystem is essential to utilize, predict, and conserve marine living resources in the 21st century. In this review paper, we summarized the past history and current status of Korean fisheries as well as the changes in climate and oceanographic phenomena since the 1960s. Ocean ecosystems in Korean waters can be divided into three, based on the marine commercial fish catches; the demersal ecosystem in the Yellow Sea and the East China Sea, the pelagic ecosystem in the Tsushima Warm Current from the East China Sea to the East/Japan Sea, and the demersal ecosystem in the northern part of the East/Japan Sea. Through the interdisciplinary retrospective analysis using available fisheries, oceanographic, and meteorological information in three important fish communities, the trend patterns in major commercial catches and the relationship between climate/environmental variability and responses of fish populations were identified. Much evidence revealed that marine ecosystems, including the fish community in Korean waters, has been seriously affected by oceanographic changes, and each species has responded differently. In general, species diversity is lessening, and mean trophic level of each ecosystem has decreased during the last $3\sim4$ decades. Future changes in fisheries due to global warming are also considered for major fisheries and aquaculture in Korean waters.

Wave Reflection over an Arbitrarily Varying Topography

  • Cho, Yong-Sik;Lee, Changhoon
    • Proceedings of the Korean Society of Coastal and Ocean Engineers Conference
    • /
    • 1997.10a
    • /
    • pp.39-44
    • /
    • 1997
  • As wind waves generated in deep water approach nearshore zone, they experience various physical phenomena caused by bathymetric variations, nonlinear interactions among different wave components and interferences with man-made coastal structures. Among these, the bathymetric variations may play a significant role in the change of wave climate. The accurate calculation of reflection and transmission coefficients of incident waves over a bottom topography is indispensible for the proper and economical design of coastal structures. (omitted)

  • PDF

Steric sea level change due to global warming in the northwestern Pacific Ocean for a $CO_2$ quadrupling (북서 태평양에서의 지구온난화로 인한 $CO_2$ 4배증시 해수면의 공간적 변화)

  • 최병호;김동훈;최영진
    • Proceedings of the Korean Society of Coastal and Ocean Engineers Conference
    • /
    • 2000.09a
    • /
    • pp.188-194
    • /
    • 2000
  • 지역적 기후변동은 전구평균 변화와는 다른 양상을 가진다. 그러나, 현재 전구적 기후변동과 해수면의 변화가 국지적으로 미칠 영향에 대한 추정능력은 매우 제한되어 있다. 본 연구에서는 NCAR(국립 대기 연구소)의 CSM (Climate System Model) 버전 1.2를 이용하여 전구뿐만 아니라 국지적인 시뮬레이션을 함께 수행하였다, 특히 북서태평양과 그 부근지역에 대한 해수변화를 중점적으로 연구했다. (중략)

  • PDF

Development of high-resolution atmosphere ocean coupled model and global warming projection with Earth Simulator -A whole research plan and result in FY2002-

  • Maruyama, Koki
    • Proceedings of the Korean Society of Coastal and Ocean Engineers Conference
    • /
    • 2003.08a
    • /
    • pp.18-27
    • /
    • 2003
  • The goal of the UN Framework Convention on Climate Change (UNFCCC) is to stabilize atmospheric CO2 concentration for preventing global warming in future. However, there are many unknown factors regarding stabilization of CO2 concentration. What level of concentration should be appropriate to prevent global warming? When should we stop the increase of CO2 concentration\ulcorner What kind of countermeasures of reducing CO2 emission will be available for CO2 stabilization?(omitted)

  • PDF

Determining Groundwater-surface Water Interaction at Coastal Lagoons using Hydrogeochemical Tracers (수리화학적 환경 추적자를 이용한 강원도 석호지역에서의 지하수-지표수 상호작용에 대한 연구)

  • Dong-Hun Kim;Jung-Yun Lee;Soo Young Cho;Hee Sun Moon;Youn-Young Jung;Yejin Park;Yong Hwa Oh
    • Journal of Soil and Groundwater Environment
    • /
    • v.28 no.2
    • /
    • pp.1-11
    • /
    • 2023
  • Groundwater-surface water interaction was evaluated using water quality parameters (temperature and electrical conductivity), distributions of stable water isotopes (δ2H and δ 18O), and Rn-222 in lagoon water, groundwater, and seawater at three coastal lagoons (Songji (SJ), Youngrang (YR), and Sunpo (SP) Lagoon) in South Korea. From the results of composition and distributions of δ2H and δ18O, it was found that groundwater fraction of lagoon water in YR Lagoon (76%) was slightly higher than those of SJ (42%), and SP (63%) Lagoon. Based on Rn-222 mass balance model, groundwater discharge into SJ Lagoon in summer 2020 was estimated to be (3.2±1.1)×103 m3 day-1, which showed a similar or an order of magnitude higher than the results of previous studies conducted in coastal lagoons. This study can provide advanced techniques to evaluate groundwater-surface water interaction in coastal lagoons, wetlands, and lakes, and help to determine the effects of groundwater on coastal ecosystems.

Accelerated Seaward Growth of Tidal Sand Bar during Giant Dyke Construction off the Mangyung River Mouth, West Coast of Korea

  • Lee, Hee-Jun;Choi, Kang-Won;Eo, Dae-Su;Chu, Yong-Shik
    • Journal of the korean society of oceanography
    • /
    • v.36 no.3
    • /
    • pp.72-82
    • /
    • 2001
  • The progress of giant dyke construction off the Mangyung and Donajin rivers, has yielded enormous impact on the estuarine environment, both hydrodynamically and sedimentologically. Especially the inter-dyke gap in the northern Saemankeum area, 4 km wide between Yamido and Piungdo, has acted as an artificial tidal inlet. Due to such a changed geometry, tidal regime has been reversed from being flood- to ebb-dominated with a directional change from NE-SW to E-W. As a result, a large tongue-like tidal sand bar (named Saemankeum Bar) has conspicuously grown seaward through the artificial tidal inlet. The Saemankeum Bar composed of well-sorted very fine sands (3.0-3.5${\phi}$) has grown at a rate of 1.63 km/yr for the past three yews (1996-1998). Such a rapid growth of the sand bar is attributed to enhanced sediment supply derived from the degradation of former tidal sand bars at the mouth of the Mangyung River. Eventually the reworking of the tidal sand bars also caused the pre-existing tidal channels to be wider, deeper and more straightened. All of these phenomena well examplify the critical effect of artificial modifications on the natural estuarine environments.

  • PDF