Climate Change-induced High Temperature Stress on Global Crop Production

기후변화로 인한 작물의 고온 스트레스 전망

  • Lee, Kyoungmi (National Institute of Meteorological Sciences) ;
  • Kang, Hyun-Suk (National Institute of Meteorological Sciences) ;
  • Cho, ChunHo (National Institute of Meteorological Sciences)
  • Received : 2016.06.17
  • Accepted : 2016.10.04
  • Published : 2016.10.31

Abstract

Exposure to high temperatures during the reproductive period of crops decreases their productivity. The Intergovernmental Panel on Climate Change's (IPCC) fifth Assessment Report predicts that the frequency of high temperatures will continue to increase in the future, resulting in significant impacts on the world's food supply. This study evaluate climate change-induced heat stress on four major agricultural crops (rice, maize, soybean, and wheat) at a global level, using the coupled atmosphere-ocean model of Hadley Centre Global Environmental Model version 2 (HadGEM2-AO) and FAO/IIASA Global Agro-Ecological Zone (GAEZ) model data. The maximum temperature rise ($1.8-3.5^{\circ}C$) during the thermal-sensitive period (TSP) from the baseline (1961-1990) to the future (2070-2090) is expected to be larger under a Representative Concentration Pathway (RCP) 8.5 climate scenario than under a RCP2.6 climate scenario, with substantial heat stress-related damage to productivity. In particular, heat stress is expected to cause severe damage to crop production regions located between 30 and $50^{\circ}N$ in the Northern Hemisphere. According to the RCP8.5 scenario, approximately 20% of the total cultivation area for all crops will experience unprecedented, extreme heat stress in the future. Adverse effects on the productivity of rice and soybean are expected to be particularly severe in North America. In Korea, grain demands are heavily dependent on imports, with the share of imports from the U.S. at a particularly high level today. Hence, it is necessary to conduct continuous prediction on food security level following the climate change, as well as to develop adaptation strategy and proper agricultural policy.

작물의 생산성은 생식기간 중 고온에 노출되면 감소한다. IPCC 5차 평가보고서는 고온의 빈도가 미래에 계속 증가할 것이며, 이는 세계 식량 공급에 영향을 미칠 것으로 전망하였다. 이 연구에서는 기상청의 Had GEM2-AO(the coupled atmosphere-ocean model of Hadley Centre Global Environmental Model version 2) 기후모델과 FAO/IIASA의 GAEZ(Global Agro-Ecological Zone) 작물모델 자료를 이용하여 전 지구 규모에서 4개의 주요 작물(쌀, 옥수수, 콩, 밀)에 대하여 기후변화로 인한 작물의 고온 스트레스를 평가하였다. 과거기간(1961~1990년)에 비해 미래(2070~2090년)에 생식기간 동안 최고기온은 약 $1.8{\sim}3.5^{\circ}C$ 상승할 것으로 전망되며, RCP2.6 시나리오에 비해 RCP8.5 시나리오에 따른 기온 상승이 더 클 것으로 전망된다. 특히 열 스트레스는 북반구 $30{\sim}50^{\circ}N$에 위치한 작물 생산 지역에 극심한 피해를 발생시킬 것으로 전망된다. RCP8.5 시나리오에 따르면 모든 작물에 대해서 전체 재배지역의 약 20%는 현재에 경험하지 못한 극단적인 고온 스트레스를 경험하게 될 것이며, 특히 북아메리카에서 쌀과 콩의 고온 스트레스 강도가 클 것으로 전망된다. 기후변화를 완화하기 위한 노력 없이 현재 추세대로 온실기체를 계속 배출한다면 온대 및 아열대 지역에서의 농업이 고온에 크게 영향을 받을 것으로 전망되며, 이는 작물의 대부분을 수입에 의존하는 우리나라 식량안보에 큰 위협이 될 수 있다. 그러므로 기후변화에 따른 식량안보에 대하여 지속적인 예측이 수행되어야 하며, 적응 전략 개발 및 적절한 농업 정책 등이 필요하다.

Keywords

References

  1. Ainsworth, E. A. and Ort, D. R., 2010, How do we improve crop production in a warming world?, Plant Physiol., 154, 526-530. https://doi.org/10.1104/pp.110.161349
  2. Baek, H.-J., Lee, J., Lee, H.-S., Hyun, Y.-K., Cho, C.H., Kwon, W.-T., Marzin, C., Gan, S.-Y., Kim, M.-J., Choi, D.-H., Lee, J., Lee, J., Boo, K.-O., Kang, H.-S., and Byun, Y.-H., 2013, Climate change in the 21st century simulated by HadGEM2-AO under representative concentration pathways, Asia-Pacific J. Atmos. Sci., 49, 603-618. https://doi.org/10.1007/s13143-013-0053-7
  3. Challinor, A. J., Wheeler, T. R., Craufurd, P. Q., and Slingo, J. M., 2005, Simulation of the impact of high temperature stress on annual crop yields, Agr. Forest Meteor., 135, 180-189. https://doi.org/10.1016/j.agrformet.2005.11.015
  4. Deryng, D., Conway, D., Ramankutty, N., Price, J., and Warren, R., 2014, Global crop yield response to extreme heat stress under multiple climate change futures, Environ. Res. Lett., 9, 1-13.
  5. Elliott, J., Müller, C., Deryng, D., Chryssanthacopoulos, J., Boote, K. J., Büchner, M., Foster, I., Glotter, M., Heinke, J., Iizumi, T., Izaurralde, R. C., Mueller, N. D., Ray, D. K., Rosenzweig, C., Ruane, A. C., and Sheffield, J., 2015, The global gridded crop model intercomparison: data and modeling protocols for Phase 1 (v1.0), Geosci. Model Dev., 8, 261-277. https://doi.org/10.5194/gmd-8-261-2015
  6. FAO, cited 2010, FAO Cuts Wheat Production Forecast but Considers Supplies Adequate. [Available online at http://www.fao.org/news/story/tr/item/44570/icode/en/.]
  7. FAOSTAT, cited 2009, Consumption-Crop Primary Equivalents, Food and Agriculture Organization of the United Nations. [Available online at http://faostat.fao.org/site/609/Desktop-Default.aspx?PageID=609#ancor.]
  8. Fischer, G., Shah, M., Tubiello, F. N., and van Velhuizen, H., 2005, Socio-economic and climate change impacts on agriculture: an integrated assessment, 1990-2080, Philos. T. Roy. Soc. B, 360, 2067-2083. https://doi.org/10.1098/rstb.2005.1744
  9. Fischer, G., van Velthuizen, H., Shah, M., and Nachtergaele, F. O., 2002, Global agro-ecological assessment for agriculture in the 21st century: methodology and results. International Institute for Applied systems Analysis (IIASA) Research report RR-02-002, IIASA, Laxenburg, Austria, 119.
  10. Gourdji, S. M., Sibley, A. M., and Lobell, D. B., 2013, Global crop exposure to critical high temperatures in the reproductive period: historical trends and future projections, Environ. Res. Lett., 8, 1-10.
  11. Hansen, J., Sato, M., and Ruedy, R., 2012, Perception of climate change, Proc. Natl. Acad. Sci., 109, E2415-2423.
  12. IPCC, 2007, Climate Change 2007: The Physical Science Basis, Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change [Solomon, S. D. Qin, M. Manning, Z. Chen, M. Marquis, K. B. Averyt, M. Tignor and H. L. Miller (eds.)], Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 996.
  13. IPCC, 2013, Climate Change 2013: The Physical Science Basis, Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Stocker, T. F., D. Qin, G.-K. Plattner, M. Tignor, S. K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P. M. Midgley (eds.)], Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 1535.
  14. IPCC, 2014, Climate Change 2014: Impacts, Adaptation and Vulnerability, Part A: Global and Sectoral Aspects, Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Field, C. B., V. R. Barros, D. J. Dokken, K. J. Mach, M. D. Mastrandrea, T. E. Bilir, M. Chatterjee, K. L. Ebi, Y. O. Estrada, R. C. Genova, B. Girma, E. S. Kissel, A. N. Levy, S. Mac-Cracken, P. R. Mastrandrea, and L. L. White (eds.)], Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 1132.
  15. Kim, T. H. and Kim, J. Y., 2013, Development of food security index, Korea Rural Economic Institute, 68. (In Korean with English abstract)
  16. Lobell, D. B., Schlenker, W., and Costa-Roberts, J., 2011, Climate trends and global crop production since 1980, Science, 333, 616-620. https://doi.org/10.1126/science.1204531
  17. MAFRA, 2014, Statistics for food, agriculture, livestock products. Ministry for Agriculture, Food and Rural Affairs, 540. (in Korean)
  18. MAFRA and aT, 2013, Export and import trends for food, agriculture, forestry and fisheries, Ministry for Agriculture, Food and Rural Affairs (MAFRA) and Korea Agro-Fisheries & Food Trade Corp. (aT), 347. (in Korean)
  19. Matsui, T., Omasa, K., and Horie, T., 2000, High temperature at flowering inhibits swelling of pollen grains, a driving force for theca dehiscence in rice (Oriza sativa L.), Plant Prod. Sci., 3, 430-434. https://doi.org/10.1626/pps.3.430
  20. Muller, C., Elliott, J., Chryssanthacopoulos, J., Deryng, D., Folberth, C., Pugh, T. A. M., and Schmid, E., 2015, Implications of climate mitigation for future agricultural production, Environ. Res. Lett., 10, 1-12.
  21. NOAA, cited 2011, NOAA National Climatic Data Center, State of the Climate: Global Hazards for July 2010. [Available online at http://www.ncdc.noaa.gov/sotc/global/.]
  22. Olesen, J. E. and Bindi, M., 2002, Consequences of climate change for European agricultural productivity, land use and policy, Eur. J. Agron., 16, 239-262. https://doi.org/10.1016/S1161-0301(02)00004-7
  23. Porter, J. R. and Semenov, M., 2005, Crop responses to climatic variation, Philos. T. Roy. Soc. B, 360, 2021-2035. https://doi.org/10.1098/rstb.2005.1752
  24. Rosenzweig, C., Elliott, J., Deryng, D., Ruane, A. C., Muller, C., Arneth, A., Boote, K. J., Folberth, C., Glotter, M., Khabarov, N., Neumann, K., Piontek, F., Pugh, T. A. M., Schmid, E., Stehfest, E., Yang, H., and Jones, W., 2014, Assessing agricultural risks of climate change in the 21st century in a global gridded crop model intercomparison, Proc. Natl. Acad. Sci. USA, 111, 3268-3273.
  25. Shah, F., Huang, J., Cui, K., Nie, L., Shah, T., Chen, C., and Wang, K., 2011, Impact of high-temperature stress on rice plant and its traits related to tolerance, J. Agr. Sci., 149, 545-556. https://doi.org/10.1017/S0021859611000360
  26. Suzuki, K., Tsukaguchi, T., Takeda, H., and Egawa, Y., 2001, Decrease of pollen stainability of green bean at high temperatures and relationship to heat tolerance, J. Amer. Soc. Hort. Sci., 126, 571-574. https://doi.org/10.21273/JASHS.126.5.571
  27. Teixeira, E. I., Fischer, G., van Velthuizen, H., Walter, C., and Ewert, F., 2013, Global hot-spots of heat stress on agricultural crops due to climate change, Agr. Forest Meteor., 170, 206-215. https://doi.org/10.1016/j.agrformet.2011.09.002
  28. Vara Prasad, P. V., Boote, K. J., and Allen, J. L. H., 2006, Adverse high temperature effects on pollen viability, seed-set, seed yield and harvest index of grainsorghum [Sorghum bicolor (L.) Moench] are more severe at elevated carbon dioxide due to higher tissue temperatures. Agr. Forest Meteor., 139, 237-251. https://doi.org/10.1016/j.agrformet.2006.07.003
  29. Vara Prasad, P. V., Craufurd, P. Q., Summerfield, R. J., and Wheeler, T. R., 2000, Effects of short episodes of heat stress on flower production and fruit-set of groudnut (Arachis hypogaea L.), J. Exp. Bot., 51, 777-784.