• Title/Summary/Keyword: observed structural behavior

Search Result 523, Processing Time 0.027 seconds

Minimizing environmental impact from optimized sizing of reinforced concrete elements

  • Santoro, Jair F.;Kripka, Moacir
    • Computers and Concrete
    • /
    • v.25 no.2
    • /
    • pp.111-118
    • /
    • 2020
  • The construction field must always explore sustainable ways of using its raw materials. Studying the environmental impact generated by reinforced concrete raw materials during their production and transportation can contribute to reducing this impact. This paper initially presents the carbon dioxide emissions from reinforced concrete raw materials, quantified per kilo of raw material and per cubic meter of concrete with different characteristic strengths, for southern Brazil. Subsequently, reinforced concrete elements were optimized to minimize their environmental impact and cost. It was observed that lower values of carbon dioxide emissions and cost savings are generated for less resistant concrete when the structural element is a beam, and that reductions in the cross section dimensions of the beams, sized based on the use of higher strength concrete, may not compensate for the increased environmental impact and costs. For the columns, the behavior differed, presenting lower values of carbon dioxide emissions and costs for higher concrete strengths. The proposed methodology, as well as the results obtained, can be used to support structural projects that have less impact on the environment.

Experiments and analysis of the post-buckling behaviors of aluminum alloy double layer space grids applying ball joints

  • Hiyama, Yujiro;Ishikawa, Koichiro;Kato, Shiro;Okubo, Shoji
    • Structural Engineering and Mechanics
    • /
    • v.9 no.3
    • /
    • pp.289-304
    • /
    • 2000
  • This study discusses on the experimental and analytical results of the global buckling tests, carried out on aluminum alloy double layer space grids composed of tubular members, ball joints and connecting bolts at the member ends, with the purpose of demonstrating the effectiveness of a simplified analysis method using an equivalent slenderness ratio for the members. Because very few experiments have been carried out on this type of aluminum space grids, the buckling behavior is investigated experimentally over the post buckling regions using several space grid specimen with various values for the member slenderness ratio. The observed behavior duping the experiments is compared with the analytically obtained results. The comparison is made based on two different schemes; one on the plastic hinge method considering a bending moment-axial force interaction for members and the other on a method using an equivalent slenderness ratio. It is confirmed that the equivalent slenderness method can be effectively applied, even in the post buckling regions, once the effects of the rotational rigidity at the ball joints are appropriately evaluated, because the rigidity controls the buckling behavior. The effectiveness of the equivalent slenderness method will be widely utilized for estimation of the ultimate strength, even in post buckling regions for large span aluminum space grids composed of an extreme large number of nodes and members.

Seismic behavior of steel tube reinforced concrete bridge columns

  • Tian, Tian;Qiu, Wen-liang;Zhang, Zhe
    • Steel and Composite Structures
    • /
    • v.28 no.1
    • /
    • pp.63-71
    • /
    • 2018
  • This paper reports an experimental study that was accomplished to assess the seismic behavior of steel tube reinforced concrete bridge columns (SBCs). The motivation of this study was to verify a supposition that the core steel tube may be terminated at a rational position in the column to minimize the material cost while maintaining the seismic behavior of this composite column. Four SBC specimens were tested under combined constant axial load and cyclic reversed lateral loads. The unique variable in the test matrix was the core steel tube embedment length, which ranged from 1/3 to 3/3 of the column effective height. It is observed that SBCs showed two distinctly different failure patterns, namely brittle shear failure and ductile flexural failure. Tests results indicate that the hysteretic responses of SBCs were susceptible to the core steel tube embedment length. With the increase of this structural parameter, the lateral strength of SBC was progressively improved; the deformability and ductility, however, exhibited a tendency of first increase and then decrease. It is also found that in addition to maintained the rate of stiffness degradation and cumulative energy dissipation basically unchanged, both the ductility and deformability of SBC were significantly improved when the core steel tube was terminated at the mid-height of the column, and these were the most unexpected benefits accompanied with material cost reduction.

Experimental study on seismic behavior of frame structures composed of concrete encased columns with L-shaped steel section and steel beams

  • Zeng, Lei;Ren, Wenting;Zou, Zhengtao;Chen, Yiguang;Xie, Wei;Li, Xianjie
    • Earthquakes and Structures
    • /
    • v.16 no.1
    • /
    • pp.97-107
    • /
    • 2019
  • The frame structures investigated in this paper is composed of Concrete encased columns with L-shaped steel section and steel beams. The seismic behavior of this structural system is studied through experimental and numerical studies. A 2-bay, 3-story and 1/3 scaled frame specimen is tested under constant axial loading and cyclic lateral loading applied on the column top. The load-displacement hysteretic loops, ductility, energy dissipation, stiffness and strength degradation are investigated. A typical failure mode is observed in the test, and the experimental results show that this type of framed structure exhibit a high strength with good ductility and energy dissipation capacity. Furthermore, finite element analysis software Perform-3D was conducted to simulate the behavior of the frame. The calculating results agreed with the test ones well. Further analysis is conducted to investigate the effects of parameters including concrete strength, column axial compressive force and steel ratio on the seismic performance indexes, such as the elastic stiffness, the maximum strength, the ductility coefficient, the strength and stiffness degradation, and the equivalent viscous damping ratio. It can be concluded that with the axial compression ratio increasing, the load carrying capacity and ductility decreased. The load carrying capacity and ductility increased when increasing the steel ratio. Increasing the concrete grade can improve the ultimate bearing capacity of the structure, but the ductility of structure decreases slightly.

Static analysis of cutout microstructures incorporating the microstructure and surface effects

  • Alazwari, Mashhour A.;Abdelrahman, Alaa A.;Wagih, Ahmed;Eltaher, Mohamed A.;Abd-El-Mottaleb, Hanaa E.
    • Steel and Composite Structures
    • /
    • v.38 no.5
    • /
    • pp.583-597
    • /
    • 2021
  • This article develops a nonclassical model to analyze bending response of squared perforated microbeams considering the coupled effect of microstructure and surface stress under different loading and boundary conditions, those are not be studied before. The corresponding material and geometrical characteristics of regularly squared perforated beams relative to fully filled beam are obtained analytically. The modified couple stress and the modified Gurtin-Murdoch surface elasticity models are adopted to incorporate the microstructure as well as the surface energy effects. The differential equations of equilibrium including the Poisson's effect are derived based on minimum potential energy. Exact closed form solution is obtained for bending behavior of the proposed model considering the classical and nonclassical boundary conditions for both uniformly distributed and concentrated loads. The proposed model is verified with results available in the literature. Influences of the microstructure length scale parameter, surface energy, beam thickness, boundary and loading conditions on the bending behavior of perforated microbeams are investigated. It is observed that microstructure and surface parameters are vital in investigation of the bending behavior of perforated microbeams. The obtained results are supportive for the design, analysis and manufacturing of perforated nanobeams that commonly used in nanoactuators, nanoswitches, MEMS and NEMS systems.

Shear-fatigue behavior of high-strength reinforced concrete beams under repeated loading

  • Kwak, Kae-Hwan;Park, Jong-Gun
    • Structural Engineering and Mechanics
    • /
    • v.11 no.3
    • /
    • pp.301-314
    • /
    • 2001
  • The purpose of this experimental study is to investigate the damage mechanism due to shear-fatigue behavior of high-strength reinforced concrete beams under repeated loading. The relationship between the number of cycles and the deflection or strain, the crack growths and modes of failure with the increase of number of cycles, fatigue strength, and S-N curve were observed through a fatigue test. Based on the fatigue test results, high-strength reinforced concrete beams failed at 57-66 percent of static ultimate strength for 2 million cycles. The fatigue strength at 2 million cycles from S-N curves was shown as about 60 percent of static ultimate strength. Compared to normal-strength reinforced concrete beams, fatigue capacity of high-strength reinforced concrete beams was similar to or lower than fatigue capacity of normal-strength reinforced concrete beams. Fatigue capacity of normal-strength reinforced concrete beams improved by over 60 percent.

Mechanical Behavior of Buried Pipe Line with Frost Prevention Materials (동상방지재료를 활용한 온도에 따른 매설관 거동 특성에 대한 연구)

  • Kang, Jae-Mo;Kim, Hak-Seung;Kim, Young-Seok;Lee, Jang-Keun;Hong, Sung-Seo
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09a
    • /
    • pp.546-552
    • /
    • 2010
  • Seasonal frozen ground affects structural behavior in South Korea. Frost and heaving of seasonal frozen ground results in the critical damage of roadway, railroad, and buried pipeline. It has been widely used to substitute frost susceptible soils with granular soils. This paper presents experimental investigation on the effectiveness of soil-shredded tire and soil-expanded polystylene (EPS) mixtures to reduce frost depth and force around a buried pipeline. Experimental data such as measured temperature profile and the deformation of buried pipeline were carefully observed and provide the evidence of the effectiveness of soil mixtures.

  • PDF

Energy Absorption Characteristics of CFRP/Foam Circular Members according to Interface Number (계면수 변화에 따른 CFRP/Foam 원형부재의 에너지 흡수특성)

  • Choi, Ju-Ho;Lee, Kil-Sung;Yang, In-Young
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.19 no.5
    • /
    • pp.603-608
    • /
    • 2010
  • In this study, one type of circular shaped composite tube was used, combined with reinforcing foam and without foam. Furthermore, CFRP(Carbon Fiber Reinforced Plastic) circular member manufactured from CFRP prepreg sheet for lightweight design. CFRP is an anisotropic material which is the most widely adapted lightweight structural member. The crashworthy behavior of circular composite material tubes subjected to static axial compression under same conditions is reported in this paper. Test was executed in order to compare the results to the energy absorption and collapse shape. The collapse mode during the failure process were observed and analyzed. The behavior of polymeric foams to the tubes crashworthiness were also investigated. According to the experimental results, specimens filled with foam are higher total energy absorption than the other specimens not filled with the foam.

Behavior of SFRC interior beam-column joints under cyclic loading

  • Khalaf, Noor Ayaad;Qissab, Musab Aied
    • Structural Monitoring and Maintenance
    • /
    • v.7 no.3
    • /
    • pp.167-193
    • /
    • 2020
  • In this paper, the behavior of interior steel fiber reinforced concrete beam - column joints (BCJs) under cyclic loading is investigated. An experimental program including tests on twelve reinforced concrete (BCJs) specimens under cyclic loading was carried out. The test specimens are divided into two groups having different geometry: group (G1) (symmetrical BCJs specimens) and group (G2) (nonsymmetrical BCJs specimens). The parameters considered in this study are the steel fibers (SFs) content by volume of concrete (Vf), the spacing of shear reinforcement at the joint region, and the area of longitudinal flexural reinforcement. Test results show that the addition of 0.5% SFs with stirrups spacing S=Smax has effectively enhanced the overall performance of BCJs with respect to energy dissipation, ductility ratio, spreading and width of cracks. The failure of specimens is governed mainly by the formation of a plastic hinge at the face column and outside the beam-column junction. Secondary shear cracks were also observed in the beam-column junctions.

Dislocation dynamics simulation on stability of high dense dislocation structure interacting with coarsening defects

  • Yamada, M.;Hasebe, T.;Tomita, Y.;Onizawa, T.
    • Interaction and multiscale mechanics
    • /
    • v.1 no.4
    • /
    • pp.437-448
    • /
    • 2008
  • This paper examined the stability of high-dense dislocation substructures (HDDSs) associated with martensite laths in High Cr steels supposed to be used for FBR, based on a series of dislocation dynamics (DD) simulations. The DD simulations considered interactions of dislocations with impurity atoms and precipitates which substantially stabilize the structure. For simulating the dissociation processes, a point defect model is developed and implemented into a discrete DD code. Wall structure composed of high dense dislocations with and without small precipitates were artificially constructed in a simulation cell, and the stability/instability conditions of the walls were systematically investigated in the light of experimentally observed coarsening behavior of the precipitates, i.e., stress dependency of the coarsening rate and the effect of external stress. The effect of stress-dependent coarsening of the precipitates together with application of external stress on the subsequent behavior of initially stabilized dislocation structures was examined.