• 제목/요약/키워드: oblique nozzle

검색결과 36건 처리시간 0.019초

덕트내 초음속 유동에서 열폐색에 의한 모듈 간의 간섭 (The Interaction Between Modules Caused by Thermal Choking in a Supersonic Duct)

  • 김장우;구경완;한창석
    • 대한기계학회논문집B
    • /
    • 제31권2호
    • /
    • pp.109-115
    • /
    • 2007
  • Airframe-integrated Scramjet engines of NASA Langley type consist of a compressor, a combustion chamber and a nozzle. When some disturbances occur in one module of the engine, its influences are propagated to other modules. In this study, it is investigated numerically how shock waves were caused by thermal choking in one module propagate upstream and how they influence adjacent modules. The calculations are carried out in 2-dimensional supersonic viscous flow model using explicit TVD scheme in generalized coordinates. The adverse pressure gradient caused by heat addition brings about separation of the wall boundary layers and formation of the oblique shock wave that proceed to upstream. This moving shock wave formed one module blocks the flow coming into the adjacent modules, which makes the modules unstarted.

슬롯관형 초음속 배기노즐의 공력소음에 관한 연구 (A Study on the Aerodynamic Noise of a Supersonic Exhaust Nozzle of Slotted Tube)

  • 이동훈;뢰호방총
    • 대한기계학회논문집B
    • /
    • 제24권1호
    • /
    • pp.132-142
    • /
    • 2000
  • The objective of this study is to experimentally investigate the noise propagating characteristics, the noise reduction mechanism and the performance of a slotted tube attached at the exit plane of a circular convergent nozzle. The experiment is performed through the systematic change of the jet pressure ratio and the slot length under the condition of two kinds of open area ratios, 25% and 51%. The open area ratio calculated by the tube length equivalent for the slot length is defined as the ratio of the total slot area to the surface area of a slotted tube. The experimental results for the near and far field sound, the visualization of jet structures and the static pressure distributions in the jet passing through a slotted tube are presented and explained in comparison with those for a simple tube. The propagating characteristics of supersonic jet noises from the slotted tube is closely connected with the slot length rather than the open area ratio, and its propagating pattern is similar to the simple tube. It is shown that the slotted tube has a good performance to suppress the shock-associated noise as well as the turbulent mixing noise in the range of a limited jet pressure and slot dimension. The considerable suppression of the shock‘associated noise is mainly due to the pressure relief caused by the high-speed jets passing through the slots on the tube. Both the strength of shock waves and the interval between them in a jet plume are decreased by the pressure relief. Moreover, the pressure relief is divided into the gradual and the sudden relief depending upon the open area ratio of the slotted tube. Consequently, the shock waves in a jet plume are also changed by the type of pressure relief. The gradual pressure relief caused by the slotted tube with the open area ratio 25% generates the weak oblique shock waves. On the contrary, the weak normal shock waves appear due to the sudden pressure relief caused by the slotted tube with the open area ratio 51%.

충돌제트계에서 사다리형 로드 배열에 의한 열전달촉진에 관한 연구 (Heat Transfer Enhancement by Trapezoid Rod Array in Impinging Jet System)

  • 임태수;금성민
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 추계학술대회논문집B
    • /
    • pp.260-267
    • /
    • 2001
  • The objective of this study was to investigate the characteristics of jet flow and heat transfer caused by trapezoid rods array in impinging jet system. In this study, trapezoid rods have been set up in front of flat plate to serve as a turbulence promoter. The bottom width of trapezoid rod was W=4, 8mm and oblique angle were $80^{\circ}$. The space from rods to the heating surface was C=1, 2, 4mm, the pitch between each rods was P=30, 40, 50mm, and the distance from nozzle exit to flat plate was H=100, 500mm. This results were compared with the case without trapezoid rods. As a result, when rods are installed in front of the impinging plate, the acceleration of the jet flow and the eddies due to the rods seem to contribute to the heat transfer enhancement. Among test conditions, the heat transfer performance was best for the condition of W=8mm, C=1mm, P=30mm and H/B=10. The maximum heat transfer rate is about 1.9 times larger than that without trapezoid rods.

  • PDF

초음속 불완전 팽창 난류 제트 유동에 관한 수치적 연구 (Numerical Analysis for Supersonic Off-Design Turbulent Jet Flow)

  • 김재수
    • 한국전산유체공학회지
    • /
    • 제4권2호
    • /
    • pp.57-66
    • /
    • 1999
  • Numerical Analysis has been done for the supersonic off-design jet flow due to the pressure difference between the jet and the ambient fluid. The difference of pressure generates an oblique shock or an expansion wave at the nozzle exit. The waves reflect repeatedly on the center axis and the sonic surface in the shear layer. The pressure difference is resolved across these reflected waves. In this paper, the axi-symmetric Navier-Stokes equation has been used with the κ-ε turbulence model. The second order TVD scheme with flux limiters, based on the flux vector split with the smooth eigenvalue split, has been used to capture internal shocks and other discontinuities. Numerical calculations have been done to analyze the off-design jet flow due to the pressure difference. The variation of pressure along the flow axis is compared with an experimental result and other numerical result. The characteristics of the interaction between the shock cell and the turbulence mixing layer have been analyzed.

  • PDF

충돌제트계에서 사다리형 로드 배열에 의한 열전달 및 유동특성 (Heat Transfer and Flow Characteristics by Trapezoid Rod Array in Impinging Jet System)

  • 금성민
    • 설비공학논문집
    • /
    • 제13권9호
    • /
    • pp.904-913
    • /
    • 2001
  • The objective of this study was to investigate the characteristics of jet flow and heat transfer caused by trapezoid rods array in impinging jet system. In this study, trapezoid rods have been set up in front of flat plate to serve as a turbulence promoter. The bottom width of trapezoid rod was W=4, 8 mm and oblique angle were 80$^{\circ}$. The space from rods to the heating surface was C=1, 2, 4 mm, the pitch between each rods was P=30, 40, 50 mm, and the distance from nozzle exit to flat plate was H=100, 500 mm. This results were compared with the case without trapezoid rods. As a result, when rods are installed in front of the impinging plate, the acceleration of the jet flow and the eddies due to the rods seem to contribute to the heat transfer enhancement. Among test conditions, the heat transfer performance was best for the condition of W=8 mm, C=1 mm, P=30 mm and H/B=10. The maximum heat transfer rate is about 1.9 times larger than that without trapezoid rods.

  • PDF

IRR형 Ramjet Intake 초음속 확산부 형상 최적설계 (Optimal Supersonic Diffuser Design of Integrated Rocket Ramjet Engine)

  • 민병영;이재우;변영환
    • 한국추진공학회지
    • /
    • 제6권2호
    • /
    • pp.65-74
    • /
    • 2002
  • 전압력 회복율을 최대로 하기 위한 IRR형 램젯 공기 흡입구 초음속 확산부의 최적형상 설계를 수행하였다. 질량유량을 제약조건으로 고려하고 외부램프에서의 두 번째 경사충격파와 카울립 형상, 그리고 흡입구 목의 단면적을 설계변수로 선택하였다. 효율적인 최적화를 위해 설계변수 변환을 통한 개선된 반응면 기법을 사용하였으며 설계반복을 통해 높은 신뢰도의 반응면을 구성할 수 있었다. 최적화 기법으로 유전자 알고리즘을 사용하였으며, 이차원 Euler Code를 사용하여 공력해석을 수행하였다. 배압조건의 적용을 위해 흡입구 목 뒤로 가상의 노즐을 장착하였고 총 20회의 계산으로 종말충격파 이후의 전압력 회복율이 기준형상에 비하여 14% 향상된 초음속 확산부 최적형상을 설계할 수 있었다.