본 논문에서는 객체지향 데이터베이스의 중포속성에 대한 색인기법으로 다차원 색인구조를 이용하는 다차원 중포속성 색인기법은 MD-NAI를 제안한다. 중포석성에 대한 기존의 색인기법들은 중포된 객체에 대한 기존의 색인기법들은 B+-tree와 같은 일차원 색인구조를 이용함으로써, 클래스 계층과 중포속성이 포함된 복합 형태의 질의들에 대한 처리를 잘 지원하지 못한다. MD-NAI에서는 객체지향 데이터베이스의 클래스 계층에 대한 색인기법인 이차원 클래스 계층 색인기법(2D-CHI)을 다차원으로 확장한다. 2D-CHI는 키 속성 도메인과 클래스 식별자 도메인으로 구성된 이차원 도메인 공간상에서 객체들의 클러스터링을 다루는 색인기법이다. 본 논문의 MD-NAI에서는 색인된 중포속성을 표현하는 경로상의 각 클래스 계층마다 하나의 클래스 식별자 도메인을 할당하여 구성된 다차원 도메인 공간상에서 색인 엔트리들의 클러스터링을 다룬다. 따라서, MD-NAI에서는 기존의 색인기법에서 지원하기 어려운 질의의 대상 범위 클래스 계층상의 임의의 클래스들로 제한되거나, 질의에 포함된 복합속성들의 도메인이 클래스 계층상의 임의의 클래스들로 제한되는 경우에도 잘 지원할 수 있다.
본 논문에서는 UML 클래스 도해의 저작도구를 위한 메타데이터의 정보 구축을 제시하고자 한다. UML의 클래스 다이어그램에서 클래스를 모델링 할 때, 표현되는 클래스(Class)와 관계(Relationship)를 정의 하였다. 클래스는 어떠한 사물의 개념적인 것을 나타내며, name, attribute, operation 세 가지로 정의하였다. 관계는 클래스와 클래스 사이의 관계를 뜻하며, 관계의 이름, From클래스, To클래스, 관계의 유형을 정의한다. 그리고 UML 클래스 도해의 처리도구를 위한 메타데이터의 정보를 가공하고 처리하는 방법을 제안하였다.
International Journal of Knowledge Content Development & Technology
/
제7권2호
/
pp.5-20
/
2017
The notion of object oriented analysis and design in software engineering has many rewards that aid the programmer to have an understanding of and improve the program efficaciously. Object oriented metrics helps rather a lot to a programmer or developer to comprehend and unravel the thing-oriented trouble readily and exactly. Object oriented metrics helps in examining the usefulness of object oriented applied sciences or in simple phrases Object-oriented metrics depict characteristics of object-oriented programming. The intention of this paper is to have an understanding of concerning the UML, Object oriented evaluation and design and the way it plays in UML.
OC-SVM(One Class Support Vector Machine)은 주어진 전체 데이터의 분포를 측정하는 대신에. 데이터 분포의 서포트(support)를 측정하는 기술로서 주어진 데이터를 가장 잘 설명할 수 있는 최적의 서포트 벡터(support vector)를 구하는 기술이다. OC-SVM은 데이터 분포의 표현에 아주 뛰어난 접근 방법이지만, 사람의 주관적인 중요도를 반영하는 것은 힘들다. 본 논문에서는 각 데이터에 퍼지 맴버쉽(fuzzy membership)을 적용하여 기존의 OC-SVM에 사용자의 주관적인 중요도를 표현할 수 있는 FOC-SVM(Fuzzy One class Support Vector Machine)을 유도 하였다. FOC-SVM은 데이터들을 동등하게 다루는 것이 아니라, 데이터 객체의 중요도에 따라 데이터를 다룬다. 즉, 덜 중요한 데이터의 특징 벡터는 OC-SVM의 처리과정에 덜 기여하도록 하기 위하여, 객체의 중요도에 따라 특징 벡터의 크기를 조정하였다. 이를 증명하기 위하여 가상의 데이터를 가지고 실험을 하였고, 실험 결과는 예측된 결과를 보여 주었다.
기존에 제안되어온 판별분석 기법이 대상으로 하는 대부분의 자료는 각 개체가 어느 한 특정한 집단에 전적으로 소속되어 있는 것으로 국한되어 왔다. 그러나 오늘날 (0-1)의 이치논리가 퍼지(Fuzzy) 개념과 다치논리로 확장되는 현상은 어느 한 개체를 꼭 한개의 집단에만 국한시키는 관점 역시 변화를 요구하고 있다고 본다. 이에 본 논문에서는 한 개체가 어떤 소속확률을 갖고 여러개의 집단에 소속되어 있는 상황을 고려하여 이러한 개체들로 구성된 학습표본으로부터 판별분석 규칙을 개발하는 것을 목표로 하였다. 방법론으로는 개체들의 특성벡터와 소속상태의 관계를 역추정(calibration) 모형으로 표현하고 판별대상개체의 특성벡터가 주어졌을 때 소속상태를 추정하도록 하며 이때 추정은 베이지안 방법, Metropolis 알고리즘 등을 사용하였다. 또한 제안된 판별규칙의 평가를 위한 기준을 제안하고 두개의 자료를 기존의 다른 규칙들과 함께 분석하여 결과를 비교하였다.
최근 많은 이미지 데이터 셋들은 일반적인 특성을 추출하기 위한 다양한 데이터 클래스와 특징을 가지고 있다. 하지만 이러한 다양한 데이터 클래스와 특징으로 인해 해당 데이터 셋으로 훈련된 물체 검출 딥러닝 모델은 데이터 특성이 다른 환경에서 좋은 성능을 내지 못하는 단점을 보인다. 이 논문에서는 하위 카테고리 기반 물체 검출 방법과 오픈셋 물체 검출 방법을 이용하여 이를 극복하고, 강인한 물체 검출 딥러닝 모델을 훈련하기 위해 능동 준지도 학습 (Active Semi-Supervised Learning)을 이용한 다중 분기 트리 구조를 제안한다. 우리는 이 구조를 이용함으로써 데이터 특성이 다른 환경에서 적응할 수 있는 모델을 가질 수 있고, 나아가 이 모델을 이용하여 이전의 모델보다 높은 성능을 확보 할 수 있다.
객체지향 언어가 가지고 있는 다양한 개념은 강력한 프로그램 구현을 지원할 수 있다. 그러나 이러한 개념에는 복잡한 이벤트의 관련성에 의해 프로그램의 분석과 이해에 어려움을 가지고 있다. 특히 객체지향 언어의 정적인 면보다는 동적인 측련의 이해를 어렵게 한다. 동적인 면은 클래스간 이벤트 작용을 인식하므로서 이해를 지원한다. 따라서 본 논문에서는 객체지향 프로그램의 이해를 지원할 수 있도록 이벤트 추상화 표현을 제시한다. 또한 클래스터링 개념을 이벤트 추상화에 적용하여, 객체지향 언어의 이해를 용이하게 지원할 수 있도록 이벤트 추상화 표현과 이벤트 추상화에 적용될 클러스터링 개념을 제시한다. 이벤트의 클래스터링에 의해서 사용 자는 클래스의 기능성 정보와 클래스 라이브러리 검색시 선택된 클래스와 이벤트 상호 작용 관계가 있는 다른 클래스를 파악함으로서 클래스 검색의 효율성을 지원한다.
인터넷 상의 문서가 많아지고 이에 대한 정확한 접근이 요구됨에 따라, 인터넷 자원에 대한 메타데이터를 표준화시키고, 메타베이스를 구축, 활용하는 것은 매우 중요하다. RDF(Resource Description Framework)는 구조화된 메타데이터를 표현하고, 교환하며 재사용하기 위한 기반 구조이며, 문법으로 XML을 이용하기 때문에 표준화된 메타데이터에 대한 일괄된 표현 및 교환, 처리가 가능하다. RDF 스키마는 RDF 모델에서 사용을 위해 제안한 기본 타입 시스템으로 본 논문에서는 XML로 된 RDF 스키마를 UML 클래스 다이어그램에 사상시키는 규칙과 알고리즘을 제안하고 이를 통해 객체 모델링하므로써 객체 지향 데이터베이스 스키마로의 변환을 용이하게 한다. 그리고, RDF 스키마에 대한 객체지향 스키마 형태인 형식 모델을 정의하여 객체지향 문서 처리와 검색을 위한 효율적인 환경을 제시할 것이다.
UML은 객체지향 개념을 매우 잘 설명하고 있으며 요구 분석 단계에서 시스템 기능을 분석하기 위한 유스케이스 다이어그램과 도메인의 객체들을 개념적으로 표현한 클래스 다이어그램을 지원하고 있으며, 설계 단계에서 클래스 내부적인 연결을 보기 위한 시퀀스 다이어그램을 지원한다. 객체지향을 지원하는 대표적인 비주얼 기반 언어인 LabVIEW OOP는 직관적인 설계 도구로서 설계와 동시에 실행할 수 있는 개발 도구이다. 그러나, LabVIEW OOP 역시 시스템 개발자가 시스템을 설계하기 위해 설계 단계에서 객체지향 개념을 잘 표현하고 이해할 수 있는 방법이 필요하다. 논문에서는 객체지향 개념을 표현하는 UML을 이용하여 설계된 모델링을 LabVIEW OOP로 설계 시에 적용 가능한 기법을 제안한다.
본 논문에서는 드론을 활용한 감시정찰 임무의 효율성을 향상하기 위해 드론 탑재장비에서 실시간으로 구동 가능한 딥러닝 기반의 객체 인식 모델을 개발하는 연구를 수행하였다. 드론 영상 내 객체 인식 성능을 높이는 목적으로 학습 단계에서 학습 데이터 전처리 및 증강, 전이 학습을 수행하였고 각 클래스 별 성능 편차를 줄이기 위해 가중 크로스 엔트로피 방법을 적용하였다. 추론 속도를 개선하기 위해 양자화 기법이 적용된 추론 가속화 엔진을 생성하여 실시간성을 높였다. 마지막으로 모델의 성능을 확인하기 위해 학습에 참여하지 않은 드론 영상 데이터에서 인식 성능 및 실시간성을 분석하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.