• Title/Summary/Keyword: object-oriented image coding

Search Result 8, Processing Time 0.019 seconds

An image Analysis Technique Using Integral Projections in Object-Oriented Analysis-Synthesis Coding (물체지향 분석 및 합성 부호화에서 가산 투영을 이용한 영상분석기법)

  • 김준석;박래홍
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.31B no.8
    • /
    • pp.87-98
    • /
    • 1994
  • Object-oriented analysis-synthesis coding subdivides each image of a sequence into moving objects and compensates the motion of each object. Thus it can reconstruct real motion better than conventional motion-compensated coding techniques at very-low-bit-rates. It uses a mapping parameter technique for estimating motion information of each object. Since a mapping parameter technique uses gradient operators it is sensitive to redundant details and noise. To accurately determine mapping parameters, we propose a new analysis method using integral projections for estimation of gradient values. Also to reconstruct correctly the local motion the proposed algorithm divides an image into segmented objects each of which having uniform motion information while the conventional one assumes a large object having the same motion information. Computer simulation results with several test sequences show that the proposed image analysis method in object-oriented analysis-synthesis coding shows better performance than the conventional one.

  • PDF

A FAST ALGORITHM FOR REGION-ORIENTED TEXTURE CODING

  • Bae, Cheol-Soo;Kim, Hyun-yul
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.7 no.4
    • /
    • pp.205-211
    • /
    • 2014
  • This paper addresses the framework of object-oriented image coding, describing a new algorithm, based on monodimensional Legendre polynomials, for texture approximation. Through the use of 1D orthogonal basis functions, the computational complexity which usually makes prohibitive most of 2D region-oriented approaches is significantly reduced, while only a slight increment of distortion is introduced. In the aim of preserving the bidimensional intersample correlation of the texture information as much as possible, suitable pseudo-bidimensional basis functions have been used, yielding significant improvements with respect to the straightforward 1D approach. The algorithm has been experimented for coding still images as well as motion compensated sequences, showing interesting possibilities of application for very low bitrate video coding.

A Fast Algorithm for Region-Oriented Texture Coding

  • Choi, Young-Gyu;Choi, Chong-Hwan;Cheong, Ha-Young
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.9 no.6
    • /
    • pp.519-525
    • /
    • 2016
  • This paper addresses the framework of object-oriented image coding, describing a new algorithm, based on monodimensional Legendre polynomials, for texture approximation. Through the use of 1D orthogonal basis functions, the computational complexity which usually makes prohibitive most of 2D region-oriented approaches is significantly reduced, while only a slight increment of distortion is introduced. In the aim of preserving the bidimensional intersample correlation of the texture information as much as possible, suitable pseudo-bidimensional basis functions have been used, yielding significant improvements with respect to the straightforward 1D approach. The algorithm has been experimented for coding still images as well as motion compensated sequences, showing interesting possibilities of application for very low bitrate video coding.

An Image Segmentation Technique For Very Low Bit Rate Video Coding

  • Jung, Seok-Yoon;Kim, Rin-Chul;Lee, Sang-Uk
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 1997.06a
    • /
    • pp.19-24
    • /
    • 1997
  • This paper describes an image segmentation technique for the object-oriented coding at very low bit rates. By noting that, in the object-oriented coding technique, each objects are represented by 3 parameters, namely, shape, motion, and color informations, we propose a segmentation technique, in which the 3 parameters are fully exploited. To achieve this goal, starting with the color space conversion and the noise reduction, the input image is divided into many small regions by the K-menas algorithm on the O-K-S color space. Then, each regions are merged, according to the shape and motion information. In simultations, it is shown that the proposed technique segments the input image into relevant objects, according to the shape and motion as well as the colors. In addition, in order to evaluate the performance of the proposed technique, we introduce the notion of the interesting regions, and provide the results of encoding the image with emphasizing the interesting regions.

  • PDF

Improved changed region detection and motion estimation for object-oriented coding (객체기반 부호화에서의 개선된 움직임 영역 추출 및 추정 기법)

  • 정의윤;박영식;송근원;한규필;하영호
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.22 no.9
    • /
    • pp.2043-2052
    • /
    • 1997
  • The object-oriented coding technique which is one of the coding methods in very low bit rate environment is suitable for videophone image sequence. The selection of source model affect image analysis. In this paper, an image analysis method for the object-oriented coding is presented. The process is composed of changed region detection andmotion estimateion. First, we use the standard deviation of frame difference as thrreshold to extract themoving area. If thesum of gray values in mask is greater than the threshold, the center pixel of the mask is regarded as moving region. After moving is detected in changed region by edge operator, observation point is determined from moving region. The motion is estimated by 6-parameter mapping method with determined observation point. The experimantal resutls show that the proposed method can significantly improve the image quality.

  • PDF

Efficient Algorithms for Motion Parameter Estimation in Object-Oriented Analysis-Synthesis Coding (객체지향 분석-함성 부호화를 위한 효율적 움직임 파라미터 추정 알고리듬)

  • Lee Chang Bum;Park Rae-Hong
    • The KIPS Transactions:PartB
    • /
    • v.11B no.6
    • /
    • pp.653-660
    • /
    • 2004
  • Object-oriented analysis-synthesis coding (OOASC) subdivides each image of a sequence into a number of moving objects and estimates and compensates the motion of each object. It employs a motion parameter technique for estimating motion information of each object. The motion parameter technique employing gradient operators requires a high computational load. The main objective of this paper is to present efficient motion parameter estimation techniques using the hierarchical structure in object-oriented analysis-synthesis coding. In order to achieve this goal, this paper proposes two algorithms : hybrid motion parameter estimation method (HMPEM) and adaptive motion parameter estimation method (AMPEM) using the hierarchical structure. HMPEM uses the proposed hierarchical structure, in which six or eight motion parameters are estimated by a parameter verification process in a low-resolution image, whose size is equal to one fourth of that of an original image. AMPEM uses the same hierarchical structure with the motion detection criterion that measures the amount of motion based on the temporal co-occurrence matrices for adaptive estimation of the motion parameters. This method is fast and easily implemented using parallel processing techniques. Theoretical analysis and computer simulation show that the peak signal to noise ratio (PSNR) of the image reconstructed by the proposed method lies between those of images reconstructed by the conventional 6- and 8-parameter estimation methods with a greatly reduced computational load by a factor of about four.

Object-oriented coder using block-based motion vectors and residual image compensation (블러기반 움직임 벡터와 오차 영상 보상을 이용한 물체지향 부호화기)

  • 조대성;박래홍
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.33B no.3
    • /
    • pp.96-108
    • /
    • 1996
  • In this paper, we propose an object-oriented coding method in low bit-rate channels using block-based motion vectors and residual image compensation. First, we use a 2-stage algorithm for estimating motion parameters. In the first stage, coarse motion parameters are estimated by fitting block-based motion vectors and in the second stage, the estimated motion parametes are refined by the gradient method using an image reconstructed by motion vectors detected in the first stage. Local error of a 6-parameter model is compensted by blockwise motion parameter correction using residual image. Finally, model failure (MF) region is reconstructed by a fractal mapping method. Computer simulation resutls show that the proposed method gives better performance than the conventional ones in terms of th epeak signal to noise ratio (PSNR) and compression ratio (CR).

  • PDF

Object-oriented coder using pyramid structure and local residual compensation (피라미드 구조 및 국부 오차 보상을 이용한 물체지향 부호화)

  • 조대성;박래홍
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.21 no.12
    • /
    • pp.3033-3045
    • /
    • 1996
  • In this paper, we propse an object-oriented coding method in low bit-rate channels using pyramid structure and residual image compensation. In the motion estimation step, global motion is estimated using a set of multiresolution images constructed in a pyramid structure. We split an input image into two regions based on the gradient value. Regions with larte motions obtain observation points at low resolution level to guarantee robustness to noise and to satisfy a motion constraint equation whereas regions with local motions such as eye, and lips get observation points at the original resolution level. Local motion variations and intesity variations of an image reconstructed by the golbal motion are compensated additionally by using the previous residual image component. Finally, the model failure (MF) region is compensated by the pyramid mapping of the previous displaced frame difference (DFD). Computer simulation results show that the proposed method gives better performance that the convnetional one in terms of the peak signal to noise ratio (PSNR), compression ratio (CR), and computational complexity.

  • PDF