• 제목/요약/키워드: object-based classifying

검색결과 78건 처리시간 0.027초

The Symbolism Embodied in the Expo Emblem-Based on Victor Turner's Symbolic Theory

  • Yongfeng Liu
    • International Journal of Advanced Culture Technology
    • /
    • 제11권2호
    • /
    • pp.238-248
    • /
    • 2023
  • This study aims to examine the symbolism of the emblems of World Expositions by using Victor Turner's symbolic theory as a research method, and to reveal the symbolic types behind them by classifying the emblem designs of different periods and themes. The research object is 12 comprehensive World's Fair emblems from the 1939 New York World's Fair in the United States to the 2025 Osaka World's Fair in Japan, as identified by Bureau International des Expositions. The research method mainly adopts documentary research to collect historical information and theoretical frameworks related to the design of World's Fair emblems. In the analysis process, Victor Turner's symbolic sign theory is used as the main analytical framework to link the design elements of emblems to their relevance to specific societies and cultures in order to reveal the themes, values and ideas represented by the emblem symbolism. The results of the study show that the design of the Expo emblem uses different symbols, including material symbols, behavioral symbols, sensory symbols, natural symbols, social symbols and virtual symbols, to convey the core concepts, themes and values of the Expo. Through different types of symbols, the Expo emblem shows a wide range of concerns about technology and the future, mankind and the world, nature and ecology, and society and innovation. The symbolic design of the emblem plays an important role in conveying the core concept and theme of the Expo.

UAV를 활용한 실시간 교통량 분석을 위한 딥러닝 기법의 적용 (Application of Deep Learning Method for Real-Time Traffic Analysis using UAV)

  • 박홍련;변성훈;이한성
    • 한국측량학회지
    • /
    • 제38권4호
    • /
    • pp.353-361
    • /
    • 2020
  • 급격한 도시화로 인해 출퇴근 시간의 차량 정체, 상시 정체지역 발생 등 다양한 교통문제들이 발생하고 있다. 이러한 교통문제들을 해결하기 위해서는 신속·정확한 교통량 예측 및 분석이 필요하다. ITS (Intelligent Transportation System)는 최신 ICT (Information and Communications Technology) 기술들을 활용하여 최적의 교통관리를 수행하는 시스템이며, 다양한 기법을 통해 신속·정확한 교통량을 분석하기 위한 많은 연구가 수행 되었다. 본 연구에서는 높은 정확도로 실시간 교통량 분석을 위해 UAV (Unmanned Aerial Vehicle) 동영상을 활용한 딥러닝(deep learning) 기반의 차량탐지기법을 제안하고자 한다. 이를 위해, UAV를 활용하여 다양한 차량이 통행하는 교차로에서 학습 및 검증에 필요한 정사 동영상 촬영을 수행하였으며, 승용차(sedan), 트럭(truck), 버스(bus)로 분류하여 차량을 학습시켰다. 딥러닝 알고리즘은 대표적인 객체탐지 알고리즘 중의 하나인 YOLOv3 (You Only Look Once V3)를 이용하였으며, 실험결과 전체 차량 검출율은 90.21%이며, 정확도와 재현율은 각각 95.10%와 85.79%이다. 본 연구를 통하여, 드론을 이용한 영상으로부터 차량 탐지를 통한 실시간 교통량 분석이 가능함을 확인하였다.

딥러닝 기반 컨테이너 적재 정렬 상태 및 사고 위험도 검출 기법 (Shipping Container Load State and Accident Risk Detection Techniques Based Deep Learning)

  • 연정흠;서용욱;김상우;오세영;정준호;박진효;김성희;윤주상
    • 정보처리학회논문지:컴퓨터 및 통신 시스템
    • /
    • 제11권11호
    • /
    • pp.411-418
    • /
    • 2022
  • 최근 항만에서는 부정확한 컨테이너 적재로 인해 컨테이너가 강풍에 쉽게 쓰러지는 컨테이너 붕괴 사고가 빈번이 발생하고 있으며 이는 물적 피해와 항만 시스템 마비로 이어지고 있다. 본 논문에서는 이런 사고를 미연에 방지하기 위해 딥러닝 기반 컨테이너 적재 상태 및 사고 위험도 검출 시스템을 제안한다. 제안된 시스템은 darknet 기반 YOLO 모델을 활용하여 컨테이너 상하의 코너캐스팅을 통해 컨테이너 정렬 상태를 실시간으로 파악하고 관리자에게 사고 위험도를 알리는 시스템이다. 제안된 시스템은 추론 속도, 분류 정확도, 검출 정확도 등을 성능 지표와 실제 구현 환경에서 최적의 성능을 보인 YOLOv4 모델을 객체 인식 알고리즘 모델로 선택하였다. 제안된 알고리즘인 YOLOv4가 YOLOv3보다 추론속도와 FPS의 성능 측면에서 낮은 성능을 보이기는 했지만, 분류 정확도와 검출 정확도에서 강력한 성능을 보임을 증명하였다.

UML의 부분-전체 관계에 대한 메타모델 형식화 이론의 적용: 집합연관 및 복합연관 판별 실험 (Applying Meta-model Formalization of Part-Whole Relationship to UML: Experiment on Classification of Aggregation and Composition)

  • 김태경
    • 지능정보연구
    • /
    • 제21권1호
    • /
    • pp.99-118
    • /
    • 2015
  • 정보 시스템 개발에 있어 객체지향 프로그래밍 언어가 널리 사용된다. 이와 함께 객체지향 설계를 뒷받침하는 개념적 모델링 언어에 관한 관심도 높다. 이를 배경으로 통합 모델링 언어 혹은 UML로 알려진 개념적 모델링 언어는 여러 객체 지향 프로그래밍 언어와 함께 사용되면서 사후적 표준으로 자리 잡았다. UML은 클래스를 설계의 중심에 둔다. 또한 클래스들 간의 관계를 통해 체계적인 이해를 가능하게 한다. 특히 부분에 해당하는 클래스들과 전체에 해당하는 클래스의 관계인 부분-전체 관계를 설계할 수 있는 문법 또한 UML에 포함된다. 현실 세계에 부분-전체 관계로 파악될 수 있는 여러대상들이 존재하고 비즈니스 활동에 존재하는 각종 역할들의 구조에서도 부분-전체 관계로 표현될 수 있는 대상들이 보편적으로 보인다. 따라서 UML로 클래스들 간의 부분-전체 관계를 드러내는 일은 자연스럽다. 문제는 부분-전체 관계를 파악하는 활동은 UML 2.0의 표준에 포함되었으나 실제 설계 과정에서 적극 활용하기 위한 실천적 이론화가 부족하다는 점이다. 부분-전체 관계를 집합연관과 복합연관으로 세분화한 UML 문법은 표현 양식에서 부족함은 없을지라도 어떤 대상을 부분-전체로 파악하고, 이를 어떻게 집합연관이나 복합연관으로 분류해야 할 것인지에 대한 판단이 쉽게 결여된다. 지금까지 UML의 부분-전체 관계 규명은 언어적 표현법을 활용하는 것에 치우쳤다. 이와 같은 문제에 대한 대안을 제시하기 위해 본 연구는 메타모델 형식화 이론을 기반으로 UML 사용자가 부분-전체 관계를 판단하고 이를 집합연관과 복합연관으로 분류할 수 있는 실천적 대안을 제시한다. 이를 활용한 실험의 결과 메타모델 형식화가 UML 사용자들에게 통용되어 온 언어적 구분법보다 더 나은 결과를 낳는다는 점이 밝혀졌다. 본 연구는 부분-전체의 판별과 구분에 도움을 주는 실용적인 방법을 제안하고 검증하였다는 점에서 의의가 있다.

BIM 기반의 준설매립전용 Library Browser 개발 (Developing Object Library Browser for Reclamation Based BIM)

  • 이동윤;이준호;이상웅;최차석;구본효
    • 한국지반환경공학회 논문집
    • /
    • 제15권3호
    • /
    • pp.57-63
    • /
    • 2014
  • 본 연구에서는 준설매립분야의 설계자동화를 위하여 준설토 투기장 설계 시 고려되는 상부 및 하부 구조물을 대상으로 Library를 구축하고, 이를 통합 관리할 수 있는 브라우저를 개발하였다. 개발 Library는 주요 단면제원을 변수화하여 형상의 가변성 확보가 가능한 파라메트릭 모델링 방법을 이용하여 작성하였으며, 작업환경에 맞게 표준횡단 및 패밀리 Library로 구분하여 작성하였다. 작성된 Library를 특성별로 구분하여 객체를 관리하고 BIM 기반 모델링 작업 시 객체의 적용이 간편하도록 C# 언어를 이용하여 브라우저를 개발하였다. 개발된 브라우저를 BIM 기반의 3차원 캐드 프로그램에 연동함으로써 간편하게 3차원 모델링, 도면작성 및 물량산출이 가능하고 신규 Library의 작성 및 관리 또한 가능하다.

딥러닝 기반 불량노면 객체 인식 모델 개발 (Development of an abnormal road object recognition model based on deep learning)

  • 최미형;우제승;홍순기;박준모
    • 융합신호처리학회논문지
    • /
    • 제22권4호
    • /
    • pp.149-155
    • /
    • 2021
  • 본 연구에서는 전동 이동기기를 이용하는 교통약자의 이동을 제한하는 노면 불량 요소를 딥러닝을 이용해 자동 검출하는 불량 노면객체 인식모델을 개발하고자 한다. 이를 위하여 부산시 관내 5개 지역에서 실제 전동 이동 보조 장치가 이동할 것으로 예상되는 보행로, 주행로를 대상으로 하여 노면 정보를 수집하였으며 이때 도로 정보 수집은 데이터 수집을 보다 용이하게 하기 위하여 소형 차량을 이용하였다. 데이터는 노면과 주변을 그 주변을 구성하는 객체로 구분하여 영상을 수집하였다. 수집된 데이터로부터 교통약자의 이동을 저해하는 정도에 따라 분류하여 보도블록의 파손등급 검출과 같은 일련의 인식 항목을 정의하였고, YOLOv5 딥러닝 알고리즘을 해당 데이터에 적용하여 실시간으로 객체를 인식하는 불량노면 객체 인식 딥러닝 모델을 구현하였다. 연구의 최종단계에서 실제 주행을 통해 객체 단위로 분리 수집된 영상 데이터의 가공, 정제 및 어노테이션 과정을 수행한 후 모델 학습과 검증을 거쳐 불량노면객체를 자동으로 검출하는 딥러닝 모델의 성능 검증 과정을 진행하였다.

딥러닝 알고리즘과 2D Lidar 센서를 이용한 이미지 분류 (Image Classification using Deep Learning Algorithm and 2D Lidar Sensor)

  • 이준호;장혁준
    • 전기전자학회논문지
    • /
    • 제23권4호
    • /
    • pp.1302-1308
    • /
    • 2019
  • 본 논문은 CNN (Convolutional Neural Network)와 2D Lidar 센서에서 획득한 위치 데이터를 이용하여 이미지를 분류하는 방법을 제시한다. Lidar 센서는 데이터 정확도, 형상 왜곡 및 광 변화에 대한 강인성 측면에서의 이점으로 인해 무인 장치에 널리 사용되어 왔다. CNN 알고리즘은 하나 이상의 컨볼루션 및 풀링 레이어로 구성되며 이미지 분류에 만족스러운 성능을 보여 왔다. 본 논문에서는 학습 방법에 따라 다른 유형의 CNN 아키텍처들인 Gradient Descent (GD) 및 Levenberg-arquardt (LM)를 구현하였다. LM 방법에는 학습 파라메터를 업데이트하는 요소 중 하나인 Hessian 행렬 근사 빈도에 따라 두 가지 유형이 있다. LM 알고리즘의 시뮬레이션 결과는 GD 알고리즘보다 이미지 데이터의 분류 성능이 우수하였다. 또한 Hessian 행렬 근사가 더 빈번한 LM 알고리즘은 다른 유형의 LM 알고리즘보다 작은 오류를 보여주었다.

PIR 센서 기반 침입감지 시스템 (Intruder Detection System Based on Pyroelectric Infrared Sensor)

  • 정연우;;조성원;정선태
    • 한국지능시스템학회논문지
    • /
    • 제26권5호
    • /
    • pp.361-367
    • /
    • 2016
  • 기존 디지털 출력 방식의 PIR 센서를 이용한 침입감지 시스템은 사람이 아닌 다른 물체에 대한 침입 탐지 오류가 많았다. 본 논문은 이를 극복하기 위하여 아날로그 출력 방식의 PIR 센서 기반 침입 감지 시스템을 제안한다. 아날로그 방식 PIR 센서는 임계값을 기준으로 이진 출력값 대신, 일정 범위 내의 다양한 전압 준위로 출력값을 내보낸다. 아날로그 PIR 센서를 이용하여 획득된 신호의 샘플링된 신호값으로부터 FFT(Fast Fourier Transform) 또는 MFCC(Mel-frequency cepstrum codfficents)을 이용하여 신호의 주파수 성분을 추출하여, 인공 신경회로망(Artificial Neural Network)의 특징벡터로 사용된다. 다양한 인간의 움직임과 애완동물의 움직임에 대한 신호 패턴들을 학습한 인공 신경회로망을 통해서 침입상황에서 침입한 객체가 사람인지 애완동물인지 판별하게 된다.

딥러닝 기반 거리 영상의 Semantic Segmentation을 위한 Atrous Residual U-Net (Atrous Residual U-Net for Semantic Segmentation in Street Scenes based on Deep Learning)

  • 신석용;이상훈;한현호
    • 융합정보논문지
    • /
    • 제11권10호
    • /
    • pp.45-52
    • /
    • 2021
  • 본 논문에서는 U-Net 기반의 semantic segmentation 방법에서 정확도를 개선하기 위한 Atrous Residual U-Net (AR-UNet)을 제안하였다. U-Net은 의료 영상 분석, 자율주행 자동차, 원격 감지 영상 등의 분야에서 주로 사용된다. 기존 U-Net은 인코더 부분에서 컨볼루션 계층 수가 적어 추출되는 특징이 부족하다. 추출된 특징은 객체의 범주를 분류하는 데 필수적이며, 부족할 경우 분할 정확도를 저하시키는 문제를 초래한다. 따라서 이 문제를 개선하기 위해 인코더에 residual learning과 ASPP를 활용한 AR-UNet을 제안하였다. Residual learning은 특징 추출 능력을 개선하고, 연속적인 컨볼루션으로 발생하는 특징 손실과 기울기 소실 문제 방지에 효과적이다. 또한 ASPP는 특징맵의 해상도를 줄이지 않고 추가적인 특징 추출이 가능하다. 실험은 Cityscapes 데이터셋으로 AR-UNet의 효과를 검증하였다. 실험 결과는 AR-UNet이 기존 U-Net과 비교하여 향상된 분할 결과를 보였다. 이를 통해 AR-UNet은 정확도가 중요한 여러 응용 분야의 발전에 기여할 수 있다.

검색과 분류를 위한 친근도 전파 기반 3차원 모델의 특징적 시점 추출 기법 (Selecting Representative Views of 3D Objects By Affinity Propagation for Retrieval and Classification)

  • 이수찬;박상현;윤일동;이상욱
    • 방송공학회논문지
    • /
    • 제13권6호
    • /
    • pp.828-837
    • /
    • 2008
  • 본 논문은 단일 3차원 모델과 모델의 클래스의 특징적인 시점을 추출하여 3차원 모델 검색 및 분류를 수행하는 기법을 제안한다. 제안하는 기법은 3차원 모델을 투영한 2차원 형상 중에 특징적인 형상을 추출하는데, 이때 고르게 샘플(sample)된 형상들을 최근 개발된 친근도 전파 (affinity propagation) 기법을 이용하여 군집화(clustering)한다. 친근도 전파는 데이터를 군집화하는 동시에 각 클러스터의 대표 값을 계산하므로, 군집화된 형상들로부터 대표 형상이 자연스럽게 지정된다. 제안하는 기법은 친근도 기법을 클래스별로 각 모델의 대표 형상 집합에 재차 적용하여 클래스의 대표 형상을 추출하고, 이를 기반으로 하여 3차원 모델의 분류도 가능하게 한다. 3차원 모델의 검색 뿐 아니라 분류를 가능하게 함으로써, 분류를 검색의 전처리 과정으로 하여 연관된 클래스의 모델 중에서만 검색을 수행할 수 있게 하여 단위가 큰 데이터베이스에서도 효율적인 검색을 가능하게 한다. [16]에 제안된 프린스턴 벤치마크 데이터베이스(Princeton benchmark database)을 이용한 실험을 통해 제안하는 검색 및 분류 기법의 유용함을 보인다.