• 제목/요약/키워드: object region

검색결과 997건 처리시간 0.024초

핵심 객체 추출에 기반한 비주거 시설의 화재불꽃 추출에 관한 기초 연구 (A Basic Study on the Fire Flame Extraction of Non-Residential Facilities Based on Core Object Extraction)

  • 박창민
    • 디지털산업정보학회논문지
    • /
    • 제13권4호
    • /
    • pp.71-79
    • /
    • 2017
  • Recently, Fire watching and dangerous substances monitoring system has been being developed to enhance various fire related security. It is generally assumed that fire flame extraction plays a very important role on this monitoring system. In this study, we propose the fire flame extraction method of Non-Residential Facilities based on core object extraction in image. A core object is defined as a comparatively large object at center of the image. First of all, an input image and its decreased resolution image are segmented. Segmented regions are classified as the outer or the inner region. The outer region is adjacent to boundaries of the image and the rest is not. Then core object regions and core background regions are selected from the inner region and the outer region, respectively. Core object regions are the representative regions for the object and are selected by using the information about the region size and location. Each inner region is classified into foreground or background region by comparing its values of a color histogram intersection of the inner region against the core object region and the core background region. Finally, the extracted core object region is determined as fire flame object in the image. Through experiments, we find that to provide a basic measures can respond effectively and quickly to fire in non-residential facilities.

객체 영역 우선 전송 기법을 이용한 SPIHT기반 점진적 영상 부호화 (Progressive Image Coding based on SPIHT Using Object Region Transmission Method by Priority)

  • 최은정;안주원;강경원;권기룡;문광석
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2000년도 추계종합학술대회 논문집(4)
    • /
    • pp.53-56
    • /
    • 2000
  • In progressive image coding, if object region that have main contents in image are transmitted prior to the remained region, this method will be very useful. In this paper, the progressive image coding based on SPIHT using object region transmission method by priority is proposed. First, an original image is transformed by wavelet. Median filtering is used about wavelet transformed coefficient region for extracting object region. This extracted object region encoded by SPIHT. Then encoded object region are transmitted in advance of the remained region. This method is good to a conventional progressive image coding about entire original image. Experimental results show that the proposed method can be very effectively used for image coding applications such as internet retrieval and database searching system.

  • PDF

차량의 헤드라이트에 강인한 실시간 객체 영역 검출 (Realtime Object Region Detection Robust to Vehicle Headlight)

  • 연승호;김재민
    • 한국멀티미디어학회논문지
    • /
    • 제18권2호
    • /
    • pp.138-148
    • /
    • 2015
  • Object detection methods based on background learning are widely used in video surveillance. However, when a car runs with headlights on, these methods are likely to detect the car region and the area illuminated by the headlights as one connected change region. This paper describes a method of separating the car region from the area illuminated by the headlights. First, we detect change regions with a background learning method, and extract blobs, connected components in the detected change region. If a blob is larger than the maximum object size, we extract candidate object regions from the blob by clustering the intensity histogram of the frame difference between the mean of background images and an input image. Finally, we compute the similarity between the mean of background images and the input image within each candidate region and select a candidate region with weak similarity as an object region.

A Novel Approach for Object Detection in Illuminated and Occluded Video Sequences Using Visual Information with Object Feature Estimation

  • Sharma, Kajal
    • IEIE Transactions on Smart Processing and Computing
    • /
    • 제4권2호
    • /
    • pp.110-114
    • /
    • 2015
  • This paper reports a novel object-detection technique in video sequences. The proposed algorithm consists of detection of objects in illuminated and occluded videos by using object features and a neural network technique. It consists of two functional modules: region-based object feature extraction and continuous detection of objects in video sequences with region features. This scheme is proposed as an enhancement of the Lowe's scale-invariant feature transform (SIFT) object detection method. This technique solved the high computation time problem of feature generation in the SIFT method. The improvement is achieved by region-based feature classification in the objects to be detected; optimal neural network-based feature reduction is presented in order to reduce the object region feature dataset with winner pixel estimation between the video frames of the video sequence. Simulation results show that the proposed scheme achieves better overall performance than other object detection techniques, and region-based feature detection is faster in comparison to other recent techniques.

An Automatic Camera Tracking System for Video Surveillance

  • Lee, Sang-Hwa;Sharma, Siddharth;Lin, Sang-Lin;Park, Jong-Il
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송공학회 2010년도 하계학술대회
    • /
    • pp.42-45
    • /
    • 2010
  • This paper proposes an intelligent video surveillance system for human object tracking. The proposed system integrates the object extraction, human object recognition, face detection, and camera control. First, the object in the video signals is extracted using the background subtraction. Then, the object region is examined whether it is human or not. For this recognition, the region-based shape descriptor, angular radial transform (ART) in MPEG-7, is used to learn and train the shapes of human bodies. When it is decided that the object is human or something to be investigated, the face region is detected. Finally, the face or object region is tracked in the video, and the pan/tilt/zoom (PTZ) controllable camera tracks the moving object with the motion information of the object. This paper performs the simulation with the real CCTV cameras and their communication protocol. According to the experiments, the proposed system is able to track the moving object(human) automatically not only in the image domain but also in the real 3-D space. The proposed system reduces the human supervisors and improves the surveillance efficiency with the computer vision techniques.

  • PDF

Fast Computation of the Visibility Region Using the Spherical Projection Method

  • Chu, Gil-Whoan;Chung, Myung-Jin
    • Transactions on Control, Automation and Systems Engineering
    • /
    • 제4권1호
    • /
    • pp.92-99
    • /
    • 2002
  • To obtain visual information of a target object, a camera should be placed within the visibility region. As the visibility region is dependent on the relative position of the target object and the surrounding object, the position change of the surrounding object during a task requires recalculation of the visibility region. For a fast computation of the visibility region so as to modify the camera position to be located within the visibility region, we propose a spherical projection method. After being projected onto the sphere the visibility region is represented in $\theta$-$\psi$ spaces of the spherical coordinates. The reduction of calculation space enables a fast modification of the camera location according to the motion of the surrounding objects so that the continuous observation of the target object during the task is possible.

Salient Object Detection via Adaptive Region Merging

  • Zhou, Jingbo;Zhai, Jiyou;Ren, Yongfeng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제10권9호
    • /
    • pp.4386-4404
    • /
    • 2016
  • Most existing salient object detection algorithms commonly employed segmentation techniques to eliminate background noise and reduce computation by treating each segment as a processing unit. However, individual small segments provide little information about global contents. Such schemes have limited capability on modeling global perceptual phenomena. In this paper, a novel salient object detection algorithm is proposed based on region merging. An adaptive-based merging scheme is developed to reassemble regions based on their color dissimilarities. The merging strategy can be described as that a region R is merged with its adjacent region Q if Q has the lowest dissimilarity with Q among all Q's adjacent regions. To guide the merging process, superpixels that located at the boundary of the image are treated as the seeds. However, it is possible for a boundary in the input image to be occupied by the foreground object. To avoid this case, we optimize the boundary influences by locating and eliminating erroneous boundaries before the region merging. We show that even though three simple region saliency measurements are adopted for each region, encouraging performance can be obtained. Experiments on four benchmark datasets including MSRA-B, SOD, SED and iCoSeg show the proposed method results in uniform object enhancement and achieve state-of-the-art performance by comparing with nine existing methods.

Object Tracking with Histogram weighted Centroid augmented Siamese Region Proposal Network

  • Budiman, Sutanto Edward;Lee, Sukho
    • International Journal of Internet, Broadcasting and Communication
    • /
    • 제13권2호
    • /
    • pp.156-165
    • /
    • 2021
  • In this paper, we propose an histogram weighted centroid based Siamese region proposal network for object tracking. The original Siamese region proposal network uses two identical artificial neural networks which take two different images as the inputs and decide whether the same object exist in both input images based on a similarity measure. However, as the Siamese network is pre-trained offline, it experiences many difficulties in the adaptation to various online environments. Therefore, in this paper we propose to incorporate the histogram weighted centroid feature into the Siamese network method to enhance the accuracy of the object tracking. The proposed method uses both the histogram information and the weighted centroid location of the top 10 color regions to decide which of the proposed region should become the next predicted object region.

칼라 영상에서의 중심 객체 추출에 관한 연구 (A Study on Extraction of Central Objects in Color Images)

  • 김성영;박창민;권규복;김민환
    • 한국멀티미디어학회논문지
    • /
    • 제5권6호
    • /
    • pp.616-624
    • /
    • 2002
  • 본 논문에서는 영상에 포함된 중심 객체를 추출하는 방법에 대해 제시한다. 중심 객체는 촬영의 중심이 되어 영상의 중앙 부분에 비교적 큰 면적을 차지하는 객체로 정의하는데 영상 내용에 대한 중요한 정보를 제공한다. 중심 객체 추출을 위해 우선 입력 영상에 대해 해상도를 줄여가며 영상 분할하고 분할된 결과에 대해 계층적 영역 병합을 수행함으로써 객체가 많은 수의 영역으로 세분화되어 영상 분할되는 것을 방지할 수 있도록 하였다. 분할된 각 영역은 영상의 경계와 접하는 경계 영역과 그 외의 비경계 영역으로 분류하였다. 비경계 영역은 중심 객체에 해당될 가능성이 있는 영역으로써, 이들 중에서 영상 중심 부근에서 가장 큰 크기를 차지하는 영역이 핵심객체영역으로 선택된다. 또한 경계 영역 중에서 영상의 네 모서리에 인접하는 영역은 핵심배경영역으로 선택되어 핵심객체영역과 함께 중심 객체 추출에 이용된다. 각 비경계 영역은 핵심 배경영역및 핵심객체영역과 칼라 분포 유사도출 비교하여 배경영역과 전경영역으로 분류된다. 핵심객체영역 및 핵심객체영역과 연결성을 가지는 전경영역이 최종 중심 객체로 선택된다. 본 논문에서 제안된 방법은 비교적 복잡한 배경을 갖는 영상에 대해서도 어느 정도 만족할 만한 결과를 얻을 수 있었다.

  • PDF

분류된 영역 병합에 의한 객체 원형을 보존하는 영상 분할 (Image segmentation preserving semantic object contours by classified region merging)

  • 박현상;나종범
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 1998년도 하계종합학술대회논문집
    • /
    • pp.661-664
    • /
    • 1998
  • Since the region segmentation at high resolution contains most of viable semantic object contours in an image, the bottom-up approach for image segmentation is appropriate for the application such as MPEG-4 which needs to preserve semantic object contours. However, the conventioal region merging methods, that follow the region segmentation, have poor performance in keeping low-contrast semantic object contours. In this paper, we propose an image segmentation algorithm based on classified region merging. The algorithm pre-segments an image with a large number of small regions, and also classifies it into several classes having similar gradient characteristics. Then regions only in the same class are merged according to the boundary weakness or statisticsal similarity. The simulation result shows that the proposed image segmentation preserves semantic object contours very well even with a small number of regions.

  • PDF