• Title/Summary/Keyword: object motion

Search Result 1,044, Processing Time 0.032 seconds

Luminance Stabilization of Image Sequence (영상 시퀀스의 밝기변화 보정)

  • Lee, Im-Geun;Han, Soow-Han
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.7
    • /
    • pp.1661-1666
    • /
    • 2010
  • Due to light condition or shadow around camera, acquired image sequence is often degraded by intensity fluctuation. This artifact is called luminance flicker. As the luminance flicker corrupts the performance of motion estimation or object detection, it should be corrected before further processing. In this paper, we analyze the flicker generation model and propose the new algorithm for flicker reduction. The proposed algorithm considers gain and offset parameter separately, and stabilizes the luminance fluctuation based on these parameters. We show the performance of the proposed method by testing on the sequence with artificially added luminance flicker and real sequence with object motion.

Segmentation and Tracking Algorithm for Moving Speaker in the Video Conference Image (화상회의 영상에서 움직이는 화자의 분할 및 추적 알고리즘)

  • Choi Woo-Young;Kim Han-Me
    • Journal of IKEEE
    • /
    • v.6 no.1 s.10
    • /
    • pp.54-64
    • /
    • 2002
  • In this paper, we propose the algorithm for segmenting the moving speaker and tracking its movement in the video conference image. For real time processing, we simplify the algorithm which is processed in the order of the segmenting and the tracking step. In the segmenting step, the speaker object is segmented from the image by using both the motion information obtained from the difference method and the illuminance information of image. The reference mask image is created from segmented speaker object. In the tracking step, the moving speaker is tracked by using simple block matching algorithm of which computation time is reduced by discarding the blocks which are classified into the unuseful blocks. In the simulation, we can get the good result of segmenting and tracking the moving speaker by applying the proposed algorithm to several test images.

  • PDF

Hologram Compression Technique using Motion Compensated Temporal Filtering (움직임보상 시간적 필터링을 이용한 홀로그램 압축 기법)

  • Seo, Young-Ho;Choi, Hyun-Jun;Kim, Dong-Wook
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.11B
    • /
    • pp.1296-1302
    • /
    • 2009
  • We propose an efficient coding method of digital holograms using MCTF and standard compression tools for video. The hologram is generated by a computer-generated hologram (CGH) algorithm with both an object image and its depth information. The proposed coding consists of localization by segmenting a hologram, frequency transform using $64\times64$ segment size, 2-D discrete cosine transform DCT for extracting redundancy, motion compensated temporal filtering (MCTF), segment scanning the segmented hologram to form a video sequence, and video coding, which uses H.264/AVC. The proposed algorithm illustrates that it has better properties for reconstruction, 10% higher compression rate than previous research in case of object.

Real-Time Motion Estimation Algorithm for Mobile Surveillance Robot (모바일 감시 로봇을 위한 실시간 움직임 추정 알고리즘)

  • Han, Cheol-Hoon;Sim, Kwee-Bo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.19 no.3
    • /
    • pp.311-316
    • /
    • 2009
  • This paper presents the motion estimation algorithm on real-time for mobile surveillance robot using particle filter. the particle filter that based on the monte carlo's sampling method, use bayesian conditional probability model which having prior distribution probability and posterior distribution probability. However, the initial probability density was set to define randomly in the most of particle filter. In this paper, we find first the initial probability density using Sum of Absolute Difference(SAD). and we applied it in the partical filter. In result, more robust real-time estimation and tracking system on the randomly moving object was realized in the mobile surveillance robot environments.

Pedestrians Action Interpretation based on CUDA for Traffic Signal Control (교통신호제어를 위한 CUDA기반 보행자 행동판단)

  • Lee, Hong-Chang;Rhee, Sang-Yong;Kim, Young-Baek
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.20 no.5
    • /
    • pp.631-637
    • /
    • 2010
  • In this paper, We propose a method of motion interpretation of pedestrian for active traffic signal control. We detect pedestrian object in a movie of crosswalk area by using the code book method and acquire contour information. To do this stage fast, we use parallel processing based on CUDA (Compute Unified Device Architecture). And we remove shadow which causes shape distortion of objects. Shadow removed object is judged by using the hilbert scan distance whether to human or noise. If the objects are judged as a human, we analyze pedestrian objects' motion, face area feature, waiting time to decide that they have intetion to across a crosswalk for pdestrians. Traffic signal can be controlled after judgement.

Collaborative Tracking Algorithm for Intelligent Video Surveillance Systems Using Multiple Network Cameras (지능형 영상 감시 시스템을 위한 다수의 네트워크 카메라를 이용한 협동 추적)

  • Lee, Deog-Yong;Jeon, Hyoung-Seok;Joo, Young-Hoon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.21 no.6
    • /
    • pp.743-748
    • /
    • 2011
  • In this paper, we propose a collaborative tracking algorithm for intelligent video surveillance systems using the multiple network cameras. To do this, each camera detects a moving object and it's movement direction by motion templates. Once a moving object is detect, the Kalman filter is used to reduce noises, and a collaborative tracking camera is selected according to the movement direction and the camera state. In this procedure, Pan-Tilt-Zoom(PTZ) parameters are assigned to obtain clear images. Finally, some experiments show the validity of the proposed method.

Experimental study on motions of VLCO for wave power generation (2. Multiple floating bodies) (파력발전용 가변수주진동장치의 운동에 대한 실험적 연구 (2. 다수 부유체))

  • Lee, Seung-Chul;Goo, Ja-Sam
    • Journal of Ocean Engineering and Technology
    • /
    • v.27 no.6
    • /
    • pp.27-31
    • /
    • 2013
  • The structure of a variable liquid column oscillator(VLCO) is analogous to that of the tuned liquid column damper used to suppress oscillatory motion in large structures like tall buildings and cargo ships. The VLCO is a system for absorbing the high kinetic energy of the accelerated motions of multiple floating bodies using an air-spring effect produced the installation of inner air chambers. Thus, a VLCO can improve the energy efficiency of the activating object type of wave energy converters made by the Pelamis Company. In this research, an experiment was performed in two cases: with the top valves closed and open. The floating bodies were connected by hinges. The effect of the internal flow was estimated by comparing the results for the closed and open valves.

Using CNN- VGG 16 to detect the tennis motion tracking by information entropy and unascertained measurement theory

  • Zhong, Yongfeng;Liang, Xiaojun
    • Advances in nano research
    • /
    • v.12 no.2
    • /
    • pp.223-239
    • /
    • 2022
  • Object detection has always been to pursue objects with particular properties or representations and to predict details on objects including the positions, sizes and angle of rotation in the current picture. This was a very important subject of computer vision science. While vision-based object tracking strategies for the analysis of competitive videos have been developed, it is still difficult to accurately identify and position a speedy small ball. In this study, deep learning (DP) network was developed to face these obstacles in the study of tennis motion tracking from a complex perspective to understand the performance of athletes. This research has used CNN-VGG 16 to tracking the tennis ball from broadcasting videos while their images are distorted, thin and often invisible not only to identify the image of the ball from a single frame, but also to learn patterns from consecutive frames, then VGG 16 takes images with 640 to 360 sizes to locate the ball and obtain high accuracy in public videos. VGG 16 tests 99.6%, 96.63%, and 99.5%, respectively, of accuracy. In order to avoid overfitting, 9 additional videos and a subset of the previous dataset are partly labelled for the 10-fold cross-validation. The results show that CNN-VGG 16 outperforms the standard approach by a wide margin and provides excellent ball tracking performance.

Robust 3-D Motion Estimation Based on Stereo Vision and Kalman Filtering (스테레오 시각과 Kalman 필터링을 이용한 강인한 3차원 운동추정)

  • 계영철
    • Journal of Broadcast Engineering
    • /
    • v.1 no.2
    • /
    • pp.176-187
    • /
    • 1996
  • This paper deals with the accurate estimation of 3- D pose (position and orientation) of a moving object with reference to the world frame (or robot base frame), based on a sequence of stereo images taken by cameras mounted on the end - effector of a robot manipulator. This work is an extension of the previous work[1]. Emphasis is given to the 3-D pose estimation relative to the world (or robot base) frame under the presence of not only the measurement noise in 2 - D images[ 1] but also the camera position errors due to the random noise involved in joint angles of a robot manipulator. To this end, a new set of discrete linear Kalman filter equations is derived, based on the following: 1) the orientation error of the object frame due to measurement noise in 2 - D images is modeled with reference to the camera frame by analyzing the noise propagation through 3- D reconstruction; 2) an extended Jacobian matrix is formulated by combining the result of 1) and the orientation error of the end-effector frame due to joint angle errors through robot differential kinematics; and 3) the rotational motion of an object, which is nonlinear in nature, is linearized based on quaternions. Motion parameters are computed from the estimated quaternions based on the iterated least-squares method. Simulation results show the significant reduction of estimation errors and also demonstrate an accurate convergence of the actual motion parameters to the true values.

  • PDF

Vision-based Low-cost Walking Spatial Recognition Algorithm for the Safety of Blind People (시각장애인 안전을 위한 영상 기반 저비용 보행 공간 인지 알고리즘)

  • Sunghyun Kang;Sehun Lee;Junho Ahn
    • Journal of Internet Computing and Services
    • /
    • v.24 no.6
    • /
    • pp.81-89
    • /
    • 2023
  • In modern society, blind people face difficulties in navigating common environments such as sidewalks, elevators, and crosswalks. Research has been conducted to alleviate these inconveniences for the visually impaired through the use of visual and audio aids. However, such research often encounters limitations when it comes to practical implementation due to the high cost of wearable devices, high-performance CCTV systems, and voice sensors. In this paper, we propose an artificial intelligence fusion algorithm that utilizes low-cost video sensors integrated into smartphones to help blind people safely navigate their surroundings during walking. The proposed algorithm combines motion capture and object detection algorithms to detect moving people and various obstacles encountered during walking. We employed the MediaPipe library for motion capture to model and detect surrounding pedestrians during motion. Additionally, we used object detection algorithms to model and detect various obstacles that can occur during walking on sidewalks. Through experimentation, we validated the performance of the artificial intelligence fusion algorithm, achieving accuracy of 0.92, precision of 0.91, recall of 0.99, and an F1 score of 0.95. This research can assist blind people in navigating through obstacles such as bollards, shared scooters, and vehicles encountered during walking, thereby enhancing their mobility and safety.