• Title/Summary/Keyword: object function

Search Result 1,594, Processing Time 0.029 seconds

CERTAIN INTEGRAL REPRESENTATIONS OF EULER TYPE FOR THE EXTON FUNCTION $X_2$

  • Choi, June-Sang;Hasanov, Anvar;Turaev, Mamasali
    • The Pure and Applied Mathematics
    • /
    • v.17 no.4
    • /
    • pp.347-354
    • /
    • 2010
  • Exton [Hypergeometric functions of three variables, J. Indian Acad. Math. 4 (1982), 113~119] introduced 20 distinct triple hypergeometric functions whose names are $X_i$ (i = 1, ..., 20) to investigate their twenty Laplace integral representations whose kernels include the confluent hypergeometric functions $_oF_1$, $_1F_1$, a Humbert function ${\Psi}_2$, a Humbert function ${\Phi}_2$. The object of this paper is to present 16 (presumably new) integral representations of Euler type for the Exton hypergeometric function $X_2$ among his twenty $X_i$ (i = 1, ..., 20), whose kernels include the Exton function $X_2$ itself, the Appell function $F_4$, and the Lauricella function $F_C$.

Development Smart Sensor & Estimation Method to Recognize Materials (대상물 인식을 위한 지능센서 및 평가기법 개발)

  • Hwang, Seong-Youn;Hong, Dong-Pyo;Chung, Tae-Jin;Kim, Young-Moon
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.15 no.3
    • /
    • pp.73-81
    • /
    • 2006
  • This paper describes our primary study for a new method of recognizing materials, which is need for precision work system. This is a study of dynamic characteristics of smart sensors, new method$(R_{SAI})$ has the sensing ability of distinguishing materials. Experiment and analysis are executed for finding the proper dynamic sensing condition. First, we developed advanced smart sensor. We made smart sensors for experiment. The type of smart sensor is HH type. The smart sensor was developed for recognition of material. Second, we develop new estimation methods that have a sensing ability of distinguish materials. Dynamic characteristics of sensor are evaluated through new recognition index$(R_{SAI})$ that ratio of sensing ability index. Distinguish of object is executed with $R_{SAI}$ method relatively. We can use the $R_{SAI}$ method for finding materials. Applications of this method are finding abnormal condition of object (auto-manufacturing), feeling of object(medical product), robotics, safety diagnosis of structure, etc.

An Attitude Control and Stabilization of an Unstructured Object using CMG Subsystem (자이로 구동장치를 이용한 공중물체의 자세제어 및 안정화)

  • Lee, Geon-Yeong;Gwon, Man-O
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.49 no.8
    • /
    • pp.459-466
    • /
    • 2000
  • In this paper, we propose an attitude controller for an unstructured object using CMG(Control Moment of Gyro) subsystem, which has a stabilizer function. The CMG subsystem consists of one motor for spinning the wheel and the other motor for turning the outer gimbal. While the wheel of CMG subsystem is spinning at high speed, applying force to the spin axis of the wheel leads the torque about the vertical axis. We utilize the torque to control the attitude of object in this study. For the stabilizer function, in additiion, holding the load at the current position, the power applied to the gimbal motor of CMG will be cut, which result in the braking force to stop the load by gyro effect. However, due to the gear reduction connected to outer gimbal, slow load motion cannot generate the braking force. Thus, in this study, we are willing to make a holding force by applying control power to the gimbal motor from the signal of piezoelectric gyroscopic sensor that detected the angular velocity of the load. These two features are demonstrated in experiment, carrying a beam with crane. As a result, load was started to rotate by controlling gimbal positiion and was stopped by turning off the gimbal power. Moreover, slow movement of the load was also rejected by additional control with gyroscopic sensor.

  • PDF

Passive Ranging Based on Planar Homography in a Monocular Vision System

  • Wu, Xin-mei;Guan, Fang-li;Xu, Ai-jun
    • Journal of Information Processing Systems
    • /
    • v.16 no.1
    • /
    • pp.155-170
    • /
    • 2020
  • Passive ranging is a critical part of machine vision measurement. Most of passive ranging methods based on machine vision use binocular technology which need strict hardware conditions and lack of universality. To measure the distance of an object placed on horizontal plane, we present a passive ranging method based on monocular vision system by smartphone. Experimental results show that given the same abscissas, the ordinatesis of the image points linearly related to their actual imaging angles. According to this principle, we first establish a depth extraction model by assuming a linear function and substituting the actual imaging angles and ordinates of the special conjugate points into the linear function. The vertical distance of the target object to the optical axis is then calculated according to imaging principle of camera, and the passive ranging can be derived by depth and vertical distance to the optical axis of target object. Experimental results show that ranging by this method has a higher accuracy compare with others based on binocular vision system. The mean relative error of the depth measurement is 0.937% when the distance is within 3 m. When it is 3-10 m, the mean relative error is 1.71%. Compared with other methods based on monocular vision system, the method does not need to calibrate before ranging and avoids the error caused by data fitting.

The Design of Alert Engine Cartridge On Moving Object Database

  • Min, Kyoung-Wook;Park, Jong-Hyun
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.189-191
    • /
    • 2003
  • The types of service using location information are being various and extending its domain as wireless internet technology is developing and its application part is widespread, so it is prospected that LBS (Location-Based Services) will be killer application in wireless internet services. The MODB (Moving Object Database) stores and manages very large current/ past moving object data, so it is very important part in LBS platform. The performance of LBS platform is tightly depending on the performance of this MODB. The other important part is alerting engine in LBS platform, which is system to transmit various value-added information or notify emergency information to mobile phone after triggering specified events. This alert engine is supported as extended function of MODB, that is to say, the alerting function is closely related with MODB. So alert cartridge on MODB must provide not only moving point triggering about going into, going out specified geographical area but also batch alerting about nearest neighbor from specified geographical area. In this paper, we study of extended part on MODB to support the alert engine. And we design alert engine cartridge on MODB before implementing the system.

  • PDF

Monocular Camera based Real-Time Object Detection and Distance Estimation Using Deep Learning (딥러닝을 활용한 단안 카메라 기반 실시간 물체 검출 및 거리 추정)

  • Kim, Hyunwoo;Park, Sanghyun
    • The Journal of Korea Robotics Society
    • /
    • v.14 no.4
    • /
    • pp.357-362
    • /
    • 2019
  • This paper proposes a model and train method that can real-time detect objects and distances estimation based on a monocular camera by applying deep learning. It used YOLOv2 model which is applied to autonomous or robot due to the fast image processing speed. We have changed and learned the loss function so that the YOLOv2 model can detect objects and distances at the same time. The YOLOv2 loss function added a term for learning bounding box values x, y, w, h, and distance values z as 클래스ification losses. In addition, the learning was carried out by multiplying the distance term with parameters for the balance of learning. we trained the model location, recognition by camera and distance data measured by lidar so that we enable the model to estimate distance and objects from a monocular camera, even when the vehicle is going up or down hill. To evaluate the performance of object detection and distance estimation, MAP (Mean Average Precision) and Adjust R square were used and performance was compared with previous research papers. In addition, we compared the original YOLOv2 model FPS (Frame Per Second) for speed measurement with FPS of our model.

IoT based Wearable Smart Safety Equipment using Image Processing (영상 처리를 이용한 IoT 기반 웨어러블 스마트 안전장비)

  • Hong, Hyungi;Kim, Sang Yul;Park, Jae Wan;Gil, Hyun Bin;Chung, Mokdong
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.17 no.3
    • /
    • pp.167-175
    • /
    • 2022
  • With the recent expansion of electric kickboards and bicycle sharing services, more and more people use them. In addition, the rapid growth of the delivery business due to the COVID-19 has significantly increased the use of two-wheeled vehicles and personal mobility. As the accident rate increases, the rule related to the two-wheeled vehicles is changed to 'mandatory helmets for kickboards and single-person transportation' and was revised to prevent boarding itself without driver's license. In this paper, we propose a wearable smart safety equipment, called SafetyHelmet, that can keep helmet-wearing duty and lower the accident rate with the communication between helmets and mobile devices. To make this function available, we propose a safe driving assistance function by notifying the driver when an object that interferes with driving such as persons or other vehicles are detected by applying the YOLO v5 object detection algorithm. Therefore it is intended to provide a safer driving assistance by reducing the failure rate to identify dangers while driving single-person transportation.

Object Tracking Framework of Video Surveillance System based on Non-overlapping Multi-camera (비겹침 다중 IP 카메라 기반 영상감시시스템의 객체추적 프레임워크)

  • Han, Min-Ho;Park, Su-Wan;Han, Jong-Wook
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.21 no.6
    • /
    • pp.141-152
    • /
    • 2011
  • Growing efforts and interests of security techniques in a diverse surveillance environment, the intelligent surveillance system, which is capable of automatically detecting and tracking target objects in multi-cameras environment, is actively developing in a security community. In this paper, we propose an effective visual surveillance system that is avaliable to track objects continuously in multiple non-overlapped cameras. The proposed object tracking scheme consists of object tracking module and tracking management module, which are based on hand-off scheme and protocol. The object tracking module, runs on IP camera, provides object tracking information generation, object tracking information distribution and similarity comparison function. On the other hand, the tracking management module, runs on video control server, provides realtime object tracking reception, object tracking information retrieval and IP camera control functions. The proposed object tracking scheme allows comprehensive framework that can be used in a diverse range of application, because it doesn't rely on the particular surveillance system or object tracking techniques.

SOME INTEGRALS ASSOCIATED WITH MULTIINDEX MITTAG-LEFFLER FUNCTIONS

  • KHAN, N.U.;USMAN, T.;GHAYASUDDIN, M.
    • Journal of applied mathematics & informatics
    • /
    • v.34 no.3_4
    • /
    • pp.249-255
    • /
    • 2016
  • The object of the present paper is to establish two interesting unified integral formulas involving Multiple (multiindex) Mittag-Leffler functions, which is expressed in terms of Wright hypergeometric function. Some deduction from these results are also considered.

A Parameter Optimization Algorithm for Power System Stabilization (전력 계통 안정화를 위한 선재설계에 관한 연구)

  • 곽노홍;문영현
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.39 no.8
    • /
    • pp.792-804
    • /
    • 1990
  • This paper describes an efficient optimization algorithm by calculating sensitivity function for power system stabilization. In power system, the dynamic performance of exciter, governor etc. following a disturbance can be presented by a nonlinear differential equation. Since a nonlinear equation can be linearized for small disturbances, the state equation is expressed by a system matrix with system parameters. The objective function for power system operation will be related to the system parameter and the initial state at the optimal control condition for control or stabilization. The object function sensitivity to the system parameter can be considered to be effective in selecting the optimal parameter of the system.

  • PDF