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SOME INTEGRALS ASSOCIATED WITH MULTIINDEX

MITTAG-LEFFLER FUNCTIONS
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Abstract. The object of the present paper is to establish two interest-
ing unified integral formulas involving Multiple (multiindex) Mittag-Leffler
functions, which is expressed in terms of Wright hypergeometric function.

Some deduction from these results are also considered.
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1. Introduction

A number of integral formulas involving a variety of special functions have
been developed by many authors (see [2, 3, 4, 5], also see [7] and [10]) moti-
vated by their work. We presents two integral formulae involving the Multiple
(multiindex) Mittag-Leffler function, which are expressed in terms of Wright
Hypergeometric function. Some interesting cases of our main results are also
considered.
The generalization of the generalized hypergeometric series pFq (1.9) is due to
Fox [1] and Wright ([12, 13, 14]) who studied the asymptotic expansion of the
generalized Wright Hypergeometric function defined by (see [7, p.21]).

pψq

[
(α1, A1), (α2, A2), · · · , (αp, Ap);

(β1, B1), (β2, B2), · · · , (βq, Bq);
z

]
=

∞∑
n=0

∏p
j=1 Γ(αj +Ajk)∏q
j=1 Γ(βj + bjk)

zk

k!
(1.1)

where the coefficients A1, · · · , Ap and B1, · · · , Bq are positive real numbers such
that

1 +

q∑
j=1

Bj −
p∑

j=1

Aj ≥ 0
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A special case of (1) is

pψq

[
(α1, 1), (α2, 1), · · · , (αp, 1);

(β1, 1), (β2, 1), · · · , (βq, 1);
z

]
=

∏p
j=1 Γ(αj)∏q
j=1 Γ(βj)

pFq

[
(α1), · · · , · · · , (αp);

(β1, 1), · · · , · · · , (βq);
z

]
,

where pFq is the generalized hypergeometric series defined by (see [8, section
1.5])

pFq

[
(α1), (α2), · · · , (αp);

(β1), (β2), · · · , (βq);
z

]
=

∞∑
n=0

(α1)n · · · (αp)n
(β1)n · · · (βq)n

zn

n!
= pFq(α1, · · ·αp;β1, · · ·βq; z)

where (λ)n is called the pochhammer’s symbol [8].
Kiryakova [11] defined the multiple (multiindex) Mittag-Leffler function as

follows. Let m > 1 be an integer, ρ1, · · ·ρm > 0 and µ1, · · ·, µm be arbitrary
real numbers. By means of “multiindices” (ρi)(µi), we introduce the so-called
multiindex(m-tuple,multiple) Mittag-Leffler functions.

E( 1
ρi

),(µi)(z) =
∞∑
k=0

zk

Γ(µ1 +
k
ρ1
) · · · Γ(µm + k

ρm
)

(1.2)

In what follows the relations of (1.2) with some known special functions:

(i) For m=2, if we put 1
ρ1

= α, 1
ρ2

= 0 and µ1 = 1, µ2 = 1, in (1.2), we have

Eα(z) =

∞∑
k=0

zk

Γ(1 + αk)
(1.3)

(ii) For m=2, if we put 1
ρ1

= α, 1
ρ2

= 0 and µ1 = β, µ2 = 1, in (1.2), we have

Eα,β(z) =
∞∑
k=0

zk

Γ(β + αk)
(1.4)

(iii) For m=2, if we put 1
ρ1

= 1, 1
ρ2

= 1 and µ1 = ν + 1, µ2 = 1 and replacing

z by −z2

4 , in (1.2), we have (see [11])

E(1,1),(1+ν,1)

(
−z2

4

)
=

(
2

z

)ν

Jν(z) (1.5)

where Jν(z) is a Bessel function of first kind (see [8, 9]).
(iv) For m=2, if we put 1

ρ1
= 1, 1

ρ2
= 1 and µ1 = 3−ν+µ

2 , µ2 = 3+ν+µ
2 and

replacing z by −z2

4 , in (1.2), we have (see [11])

E(1,1),( 3−ν+µ
2 , 3+ν+µ

2 )

(
−z2

4

)
=

1

zµ+1
4Sµ,ν(z) (1.6)

where Sµ,ν(z) is a Struve function (see [8, 9]).
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(v) For m=2, if we put 1
ρ1

= 1, 1
ρ2

= 1 and µ1 = 3
2 , µ2 = 3+2ν

2 and replacing

z by −z2

4 , in (1.2), we have (see [11])

E(1,1),( 3
2 ,

3+2ν
2 )

(
−z2

4

)
=

1

zµ+1
4Hν(z) (1.7)

where Hν(z) is a Lommel function (see [8, 9]).

In the present investigations, we shall be invoking following relations, see
Obhettinger [6].∫ ∞

0

xµ−1(x+ a+
√
x2 + 2ax)−λdx = 2λa−λ

(a
2

)µ Γ(2µ)Γ(λ− µ)

Γ(1 + λ+ µ)
(1.8)

provided 0 < R(µ) < R(λ).

2. Main results

Two generalized integral formulae, which have been established in this section,
are expressed in terms of generalized (Wrigt) hypergeometric function, Multi-
ple Mittag-Leffler, with suitable arguments in the integrands, is invoked in the
analysis of the results under investigation.

First Integral
The following integral formula holds true:∫ ∞

0

xµ−1(x+ a+
√
x2 + 2ax)−λE( 1

ρi
),(µi)

(
y

x+ a+
√
x2 + 2ax

)
dx

=21−µaµ−λΓ(2µ) 3ψm+2


(1 + λ, 1), (λ− µ, 1), (1, 1);

(µ1,
1

ρ1
), . . . , (µm,

1

ρm
), (λ, 1), (1 + λ+ µ, 1);

y

a

 . (2.1)

Second Integral
The following integral formula holds true:∫ ∞

0

xµ−1(x+ a+
√
x2 + 2ax)−λE( 1

ρi
),(µi)

(
xy

x+ a+
√
x2 + 2ax

)
dx

=21−µaµ−λΓ(λ− µ) 3ψm+2


(1 + λ, 1), (2µ, 2), (1, 1);

(µ1,
1

ρ1
), . . . , (µm,

1

ρm
), (λ, 1), (1 + λ, 2);

y

2

 . (2.2)

Proof of (2.1).

In order to derive (2.1), we denote the left- hand side of (2.1) by I, expressing
E( 1

ρi
),µi

(z) as a series with the help of (1.2) and then interchanging the order

of integration and summation, which is justified by uniform convergence of the
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involved series under the given conditions, we get

I =

∫ ∞

0

xµ−1(x+ a+
√
x2 + 2ax)−λE( 1

ρi
),(µi)

(
y

x+ a+
√
x2 + 2ax

)
dx

=
∞∑
k=0

(y)k

Γ(µ1 +
k
ρ1
) · · · (µm + k

ρm
)

∫ ∞

0

xµ−1(x+ a+
√
x2 + 2ax)−λ−k dx

Evaluating the above integral with the help of (1.8), we get

I = 21−µaµ−λΓ(2µ)

∞∑
k=0

Γ(1 + k + λ)Γ(λ+ k− µ)Γ(1 + k)

Γ(µ1 +
k
ρ1
) . . .Γ(µm + k

ρm
)Γ(1 + k + λ+ µ)Γ(λ+ k)

(y
a

)k 1

k!
.

Finally, summing the above series with the help of (1.1), we arrive at the right
hand side of (2.1). This completes the proof of first result.

Proof of (2.2).

Similarly, to derive (2.2), we denote the left- hand side of (2.2) by I
′
, expressing

E( 1
ρi

),µi
(z) as a series with the help of (1.2) and then interchanging the order

of integration and summation, which is justified by uniform convergence of the
involved series under the given conditions, we get

I
′
=

∫ ∞

0

xµ−1(x+ a+
√
x2 + 2ax)−λE( 1

ρi
),(µi)

(
xy

x+ a+
√
x2 + 2ax

)
dx

=

∞∑
k=0

(y)k

Γ(µ1 +
k
ρ1
) · · · (µm + k

ρm
)

∫ ∞

0

xµ+k−1(x+ a+
√
x2 + 2ax)−λ−k dx

Evaluating the above integral with the help of (1.8), we get

I
′
= 21−µaµ−λΓ(2µ)

∞∑
k=0

Γ(1 + k + λ)Γ(2k + 2µ)Γ(k + 1)

Γ(µ1 +
k
ρ1
) . . .Γ(µm + k

ρm
)Γ(1 + 2k + λ)Γ(λ+ k)

(y
2

)k 1

k!
.

Finally, summing the above series with the help of (1.1), we arrive at the right
hand side of (2.2). This completes the proof of second result.

3. Special Cases

In this section, we define some special cases of our main results:

1.

∫ ∞

0

xµ−1(x+ a+
√
x2 + 2ax)−λ Eα

(
y

x+ a+
√
x2 + 2ax

)
dx

= 21−µ aµ−λ Γ(2µ) 3ψ3

(1 + λ, 1), (λ− µ, 1), (1, 1);

(1, α), (1 + µ+ λ, 1), (λ, 1);

y

a

 (3.1)
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2.

∫ ∞

0

xµ−1(x+ a+
√
x2 + 2ax)−λ Eα

(
xy

x+ a+
√
x2 + 2ax

)
dx

= 21−µ aµ−λ Γ(λ− µ) 3ψ3

(1 + λ, 1), (2µ, 2), (1, 1);

(1, α), (1 + λ, 2), (λ, 1);

y

2

 (3.2)

The above results (3.1) and (3.2) can be established with the help of integrals
(2.1) and (2.2) by taking m=2, 1

ρ1
= α, 1

ρ2
= 0, µ1 = 1, µ2 = 1 and using

equation (1.3).

3.

∫ ∞

0

xµ−1(x+ a+
√
x2 + 2ax)−λ Eα,β

(
y

x+ a+
√
x2 + 2ax

)
dx

= 21−µ aµ−λ Γ(2µ) 3ψ3

(1 + λ, 1), (λ− µ, 1), (1, 1);

(β, α), (1 + µ+ λ, 1), (λ, 1);

y

a

 (3.3)

4.

∫ ∞

0

xµ−1(x+ a+
√
x2 + 2ax)−λ Eα,β

(
xy

x+ a+
√
x2 + 2ax

)
dx

= 21−µ aµ−λ Γ(λ− µ) 3ψ3

(1 + λ, 1), (2µ, 2), (1, 1);

(β, α), (1 + λ, 2), (λ, 1);

y

2

 (3.4)

The above results (3.3) and (3.4) can be established with the help of integrals
(2.1) and (2.2) by taking m=2, 1

ρ1
= α, 1

ρ2
= 0, µ1 = β, µ2 = 1 and using

equation (1.4).

5.

∫ ∞

0

xµ−1(x+ a+
√
x2 + 2ax)−λ+ ν

2 Jν

[
2i

(
y

x+ a+
√
x2 + 2ax

) 1
2

]
dx

= iν (y)
ν
2 21−µ aµ−λ Γ(2µ) 2ψ3

 (1 + λ, 1), (λ− µ, 1);

(1 + µ+ λ, 1), (1 + ν, 1), (λ, 1);

y

a

 (3.5)

6.

∫ ∞

0

x
2µ−ν−2

2 (x+ a+
√
x2 + 2ax)−λ+ ν

2 Jν

[
2i

(
xy

x+ a+
√
x2 + 2ax

) 1
2

]
dx

= iν (y)
ν
2 21−µ aµ−λ Γ(λ− µ) 2ψ3

(1 + λ, 1), (2µ, 2);

(1 + λ, 2), (1 + ν, 1), (λ, 1);

y

2

 (3.6)
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The above results (3.5) and (3.6) can be established with the help of integrals
(2.1) and (2.2) by taking m=2, 1

ρ1
= 1, 1

ρ2
= 1, µ1 = ν + 1, µ2 = 1, replacing z

by −z2

4 and using equation (1.5) (see [11]).

7.

∫ ∞

0
xµ−1(x+ a+

√
x2 + 2ax)

µ−2λ+1
2 Sµ,ν

[
2i

(
y

x+ a+
√
x2 + 2ax

) 1
2

]
dx

= iµ+1 (y)
µ+1
2 aµ−λ Γ(2µ) 3


(1 + λ, 1), (λ− µ, 1), (1, 1);

(1 + µ+ λ, 1), (
3− ν + µ

2
, 1), (

3 + ν + µ

2
, 1), (λ, 1);

y

a


(3.7)

8.

∫ ∞

0
x

µ−3
2 (x+ a+

√
x2 + 2ax)

µ−2λ+1
2 Sµ,ν

[
2i

(
xy

x+ a+
√
x2 + 2ax

) 1
2

]
dx

= iµ+1 (y)
µ+1
2 aµ−λ Γ(λ− µ) 3ψ4


(1 + λ, 1), (2µ, 2), (1, 1);

(1 + λ, 2), (
3− ν + µ

2
, 1), (

3 + ν + µ

2
, 1), (λ, 1);

y

2


(3.8)

The above results (3.7) and (3.8) can be established with the help of integrals
(2.1) and (2.2) by taking m=2, 1

ρ1
= 1, 1

ρ2
= 1, µ1 = 3−ν+µ

2 , µ2 = 3+ν+µ
2 ,

replacing z by −z2

4 and using equation (1.6) (see [11]).

9.

∫ ∞

0

xµ−1(x+ a+
√
x2 + 2ax)

ν−2λ+1
2 Hν

[
2i

(
y

x+ a+
√
x2 + 2ax

) 1
2

]
dx

= iµ+1 (y)
ν+1
2 2ν−µ aµ−λΓ(2µ) 3ψ4


(1 + λ, 1), (λ− µ, 1), (1, 1);

(1 + µ+ λ, 1), (
3

2
, 1), (

3 + 2ν

2
, 1), (λ, 1);

y

a


(3.9)

10.

∫ ∞

0

x
2µ−ν−3

2 (x+ a+
√
x2 + 2ax)

µ−2λ+1
2 Hν

[
2i

(
xy

x+ a+
√
x2 + 2ax

) 1
2

]
dx

= iµ+1 (y)
µ+1
2 2ν−µ aµ−λΓ(λ− µ) 3ψ4


(1 + λ, 1), (2µ, 2), (1, 1);

(1 + λ, 2), (
3

2
, 1), (

3 + 2ν

2
, 1), (λ, 1);

y

2


(3.10)

The above results (3.9) and (3.10) can be established with the help of integrals
(2.1) and (2.2) by taking m=2, 1

ρ1
= 1, 1

ρ2
= 1, µ1 = 3

2 , µ2 = 3+2ν
2 , replacing z

by −z2

4 and using equation (1.7).
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