• Title/Summary/Keyword: object detection system

Search Result 1,079, Processing Time 0.028 seconds

Design of a Vision Chip for Edge Detection with an Elimination Function of Output Offset due to MOSFET Mismatch (MOSFET의 부정합에 의한 출력옵셋 제거기능을 가진 윤곽검출용 시각칩의 설계)

  • Park, Jong-Ho;Kim, Jung-Hwan;Lee, Min-Ho;Shin, Jang-Kyoo
    • Journal of Sensor Science and Technology
    • /
    • v.11 no.5
    • /
    • pp.255-262
    • /
    • 2002
  • Human retina is able to detect the edge of an object effectively. We designed a CMOS vision chip by modeling cells of the retina as hardwares involved in edge detection. There are several fluctuation factors which affect characteristics of MOSFETs during CMOS fabrication process and this effect appears as output offset of the vision chip which is composed of pixel arrays and readout circuits. The vision chip detecting edge information from input image is used for input stage of other systems. Therefore, the output offset of a vision chip determine the efficiency of the entire performance of a system. In order to eliminate the offset at the output stage, we designed a vision chip by using CDS(Correlated Double Sampling) technique. Using standard CMOS process, it is possible to integrate with other circuits. Having reliable output characteristics, this chip can be used at the input stage for many applications, like targe tracking system, fingerprint recognition system, human-friendly robot system and etc.

Design of Mixed Reality based Convergence Edutainment System using Cloud Service (클라우드 서비스를 이용한 복합현실 기반의 융합형 에듀테인먼트 시스템 설계)

  • Kim, Donghyun;Kim, Minho
    • Journal of the Korea Convergence Society
    • /
    • v.6 no.3
    • /
    • pp.103-109
    • /
    • 2015
  • TOLED(Transparent, Organic Light Emitting Diodes) based edutainment system has been studied to solve the actual feeling training and educational experience problem of e-learning. However, edutainment system using TOLED has a problem for the non-detection of multi marker array and rotate marker array, and it has problem for the dissonance phenomena caused by Illumination Environment between real world and virtual object. It also has a do not provide services through a variety of devices problem. Therefore, in this paper, we designed a system that provides a realistic actual feeling edutainment contents by recognizes the marker array rotation and a plurality of marker arrangement via an improved marker detection technique. And to unify the real space and virtual space of the lighting environment through a nested block layer.

Offline In-Hand 3D Modeling System Using Automatic Hand Removal and Improved Registration Method (자동 손 제거와 개선된 정합방법을 이용한 오프라인 인 핸드 3D 모델링 시스템)

  • Kang, Junseok;Yang, Hyeonseok;Lim, Hwasup;Ahn, Sang Chul
    • Journal of the HCI Society of Korea
    • /
    • v.12 no.3
    • /
    • pp.13-23
    • /
    • 2017
  • In this paper, we propose a new in-hand 3D modeling system that improves user convenience. Since traditional modeling systems are inconvenient to use, an in-hand modeling system has been studied, where an object is handled by hand. However, there is also a problem that it requires additional equipment or specific constraints to remove hands for good modeling. In this paper, we propose a contact state change detection algorithm for automatic hand removal and improved ICP algorithm that enables outlier handling and additionally uses color for accurate registration. The proposed algorithm enables accurate modeling without additional equipment or any constraints. Through experiments using real data, we show that it is possible to accomplish accurate modeling under the general conditions without any constraint by using the proposed system.

Lunar Crater Detection using Deep-Learning (딥러닝을 이용한 달 크레이터 탐지)

  • Seo, Haingja;Kim, Dongyoung;Park, Sang-Min;Choi, Myungjin
    • Journal of Space Technology and Applications
    • /
    • v.1 no.1
    • /
    • pp.49-63
    • /
    • 2021
  • The exploration of the solar system is carried out through various payloads, and accordingly, many research results are emerging. We tried to apply deep-learning as a method of studying the bodies of solar system. Unlike Earth observation satellite data, the data of solar system differ greatly from celestial bodies to probes and to payloads of each probe. Therefore, it may be difficult to apply it to various data with the deep-learning model, but we expect that it will be able to reduce human errors or compensate for missing parts. We have implemented a model that detects craters on the lunar surface. A model was created using the Lunar Reconnaissance Orbiter Camera (LROC) image and the provided shapefile as input values, and applied to the lunar surface image. Although the result was not satisfactory, it will be applied to the image of the permanently shadow regions of the Moon, which is finally acquired by ShadowCam through image pre-processing and model modification. In addition, by attempting to apply it to Ceres and Mercury, which have similar the lunar surface, it is intended to suggest that deep-learning is another method for the study of the solar system.

A climbing movement detection system through efficient cow behavior recognition based on YOLOX and OC-SORT (YOLOX와 OC-SORT 기반의 효율적인 소 행동 인식을 통한 승가 운동 감지시스템)

  • LI YU;NamHo Kim
    • Smart Media Journal
    • /
    • v.12 no.7
    • /
    • pp.18-26
    • /
    • 2023
  • In this study, we propose a cow behavior recognition system based on YOLOX and OC-SORT. YOLO X detects targets in real-time and provides information on cow location and behavior. The OC-SORT module tracks cows in the video and assigns unique IDs. The quantitative analysis module analyzes the behavior and location information of cows. Experimental results show that our system demonstrates high accuracy and precision in target detection and tracking. The average precision (AP) of YOLOX was 82.2%, the average recall (AR) was 85.5%, the number of parameters was 54.15M, and the computation was 194.16GFLOPs. OC-SORT was able to maintain high-precision real-time target tracking in complex environments and occlusion situations. By analyzing changes in cow movement and frequency of mounting behavior, our system can help more accurately discern the estrus behavior of cows.

Learning efficiency checking system by measuring human motion detection (사람의 움직임 감지를 측정한 학습 능률 확인 시스템)

  • Kim, Sukhyun;Lee, Jinsung;Yu, Eunsang;Park, Seon-u;Kim, Eung-Tae
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • fall
    • /
    • pp.290-293
    • /
    • 2021
  • In this paper, we implement a learning efficiency verification system to inspire learning motivation and help improve concentration by detecting the situation of the user studying. To this aim, data on learning attitude and concentration are measured by extracting the movement of the user's face or body through a real-time camera. The Jetson board was used to implement the real-time embedded system, and a convolutional neural network (CNN) was implemented for image recognition. After detecting the feature part of the object using a CNN, motion detection is performed. The captured image is shown in a GUI written in PYQT5, and data is collected by sending push messages when each of the actions is obstructed. In addition, each function can be executed on the main screen made with the GUI, and functions such as a statistical graph that calculates the collected data, To do list, and white noise are performed. Through learning efficiency checking system, various functions including data collection and analysis of targets were provided to users.

  • PDF

A Study on Efficient Vehicle Tracking System using Dynamic Programming Method (동적계획법을 이용한 효율적인 차량 추적 시스템에 관한 연구)

  • Kwon, Hee-Chul
    • Journal of Digital Convergence
    • /
    • v.13 no.12
    • /
    • pp.209-215
    • /
    • 2015
  • In the past, there have been many theory and algorithms for vehicle tracking. But the time complexity of many feature point matching methods for vehicle tracking are exponential. Also, object segmentation and detection algorithms presented for vehicle tracking are exhaustive and time consuming. Therefore, we present the fast and efficient two stages method that can efficiently track the many moving vehicles on the road. The first detects the vehicle plate regions and extracts the feature points of vehicle plates. The second associates the feature points between frames using dynamic programming.

The Study of Micro Crack Detection in Dissimilar Metal Weld Using a Variable Ultrasound Infrared Thermography (가변초음파 적외선열화상을 이용한 이종접합용접부의 미세균열 검출 연구)

  • Park, Jeong-Hak;Park, Hee-Sang;Choi, Man-Yong;Kwon, Koo-Ahn
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.35 no.3
    • /
    • pp.215-220
    • /
    • 2015
  • As a nondestructive inspection technology currently in use, infrared thermography has gradually expanded its application range to industry. The method detects only defect areas by grafting ultrasound on a technique of detecting infrared energy emitted from all objects with absolute temperature of 0 K and converting this energy into thermography for inspection. Ultrasound infrared thermography has merits including the ability to inspect a wide area in a short time without contacting the target object. This study investigated the applicability of the technique for defect detection using variable ultrasound excitation inspection methods on samples of Terfenol-D, a magnetostrictive material with a tunable natural resonant frequency.

Development of an Array-Type Flexible Tactile Sensor Using PVDF and Flexible Circuitry

  • Kwon, Tae-Kyu;Yu, Kee-Ho;Yun, Myung-Jong;Lee, Seong-Cheol
    • Journal of Sensor Science and Technology
    • /
    • v.11 no.4
    • /
    • pp.200-208
    • /
    • 2002
  • This paper represents the development of an array-type flexible tactile sensor using PVDF(polyvinylidene fluoride) film and flexible circuitry. The tactile sensor which has $8{\times}8$ taxels is made by using PVDF film and FPC(flexible printed circuit) technique. Experimental results on static and dynamic properties are obtained by applying arbitrary forces and frequencies generated by the shaker. In the static characteristics, the threshold and the linearity of the sensor are investigated. Also dynamic response of the sensor subjected to the variable frequencies is examined. The signals of a contact force to the tactile sensor are sensed and processed in the DSP system in which the signals are digitalized and filtered. Finally, the signals are integrated for taking the force profile. The processed signals of the outputs of the sensor are visualized on a personal computer, the shape and force distribution of the contacted object are obtained using two and three-dimensional image in real time. The reasonable performance for the detection of contact state is verified through the experiment.

A Intrusion Detection System Using Object Motion Recognition Method (객체 움직임 인식기법을 이용한 침입탐지 시스템)

  • Jang, Sung-Mo;Park, Hyon-Gun;Seo, Jeong-Min;Lee, Sang-Moon
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2010.07a
    • /
    • pp.319-322
    • /
    • 2010
  • 본 논문에서는 저가의 비용으로 구축이 가능한 USB 인터페이스용 PC 카메라를 이용한다. 사람의 침입이나 사람의 움직임을 감시할 필요가 있는 장소에 카메라를 설치하여 영상을 계속 감시한다. 감시가 필요한 장소에 설치된 각 카메라의 영상에 변화를 저장하여 기록하는데 있어서, 비교적 적은 비용이 필요하다. 또한 감시가 필요한 장소를 보다 안전하고 정확하게 감시할 수 있는 무인 침입탐지시스템에 영상처리와 영상인식 기술을 이용하여 실시간 감시시스템을 구현한다. 구현한 시스템은 웹을 기반으로 다양한 원격지의 화상 자료의 신속한 전송, 정확성의 구현, 특정 움직임의 캡처 및 선택, 검색, 자동 움직임 감지 등의 장점을 제공한다. 또한 독자적 시스템을 제공하여 다수의 시스템을 영상 입력 서버로 이용이 가능하도록 하였다. 뿐만 아니라, 서버에 C/S 형태의 시스템도 함께 제공하여, 영상인식 모듈을 탑재할 수도 있다. 덧붙여 인터넷을 통한 자료의 전송기술 및 QoS 만족을 위한 자료의 압축 및 품질 향상 기술을 적용하여 원격 출력과 원격 전송이 가능하여 저장 장치의 유지 관리 및 설치면에서 많은 경제적 이점이 있다.

  • PDF