• Title/Summary/Keyword: object detection system

Search Result 1,079, Processing Time 0.029 seconds

Real-time Detection and Tracking of Moving Objects Based on DSP (DSP 기반의 실시간 이동물체 검출 및 추적)

  • Lee, Uk-Jae;Kim, Yang-Su;Lee, Sang-Rak;Choi, Han-Go
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.11 no.4
    • /
    • pp.263-269
    • /
    • 2010
  • This paper describes real-time detection and tracking of moving objects for unmanned visual surveillance. Using images obtained from the fixed camera it detects moving objects within the image and tracks them with displaying rectangle boxes enclosing the objects. Tracking method is implemented on an embedded system which consists of TI DSK645.5 kit and the FPGA board connected on the DSP kit. The DSP kit processes image processing algorithms for detection and tracking of moving objects. The FPGA board designed for image acquisition and display reads the image line-by-line and sends the image data to DSP processor, and also sends the processed data to VGA monitor by DMA data transfer. Experimental results show that the tracking of moving objects is working satisfactorily. The tracking speed is 30 frames/sec with 320x240 image resolution.

The Target Detection and Classification Method Using SURF Feature Points and Image Displacement in Infrared Images (적외선 영상에서 변위추정 및 SURF 특징을 이용한 표적 탐지 분류 기법)

  • Kim, Jae-Hyup;Choi, Bong-Joon;Chun, Seung-Woo;Lee, Jong-Min;Moon, Young-Shik
    • Journal of the Korea Society of Computer and Information
    • /
    • v.19 no.11
    • /
    • pp.43-52
    • /
    • 2014
  • In this paper, we propose the target detection method using image displacement, and classification method using SURF(Speeded Up Robust Features) feature points and BAS(Beam Angle Statistics) in infrared images. The SURF method that is a typical correspondence matching method in the area of image processing has been widely used, because it is significantly faster than the SIFT(Scale Invariant Feature Transform) method, and produces a similar performance. In addition, in most SURF based object recognition method, it consists of feature point extraction and matching process. In proposed method, it detects the target area using the displacement, and target classification is performed by using the geometry of SURF feature points. The proposed method was applied to the unmanned target detection/recognition system. The experimental results in virtual images and real images, we have approximately 73~85% of the classification performance.

A Study on Machine Learning Algorithm Suitable for Automatic Crack Detection in Wall-Climbing Robot (벽면 이동로봇의 자동 균열검출에 적합한 기계학습 알고리즘에 관한 연구)

  • Park, Jae-Min;Kim, Hyun-Seop;Shin, Dong-Ho;Park, Myeong-Suk;Kim, Sang-Hoon
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.8 no.11
    • /
    • pp.449-456
    • /
    • 2019
  • This paper is a study on the construction of a wall-climbing mobile robot using vacuum suction and wheel-type movement, and a comparison of the performance of an automatic wall crack detection algorithm based on machine learning that is suitable for such an embedded environment. In the embedded system environment, we compared performance by applying recently developed learning methods such as YOLO for object learning, and compared performance with existing edge detection algorithms. Finally, in this study, we selected the optimal machine learning method suitable for the embedded environment and good for extracting the crack features, and compared performance with the existing methods and presented its superiority. In addition, intelligent problem - solving function that transmits the image and location information of the detected crack to the manager device is constructed.

Deep Learning-Based Defects Detection Method of Expiration Date Printed In Product Package (딥러닝 기반의 제품 포장에 인쇄된 유통기한 결함 검출 방법)

  • Lee, Jong-woon;Jeong, Seung Su;Yu, Yun Seop
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.05a
    • /
    • pp.463-465
    • /
    • 2021
  • Currently, the inspection method printed on food packages and boxes is to sample only a few products and inspect them with human eyes. Such a sampling inspection has the limitation that only a small number of products can be inspected. Therefore, accurate inspection using a camera is required. This paper proposes a deep learning object recognition technology model, which is an artificial intelligence technology, as a method for detecting the defects of expiration date printed on the product packaging. Using the Faster R-CNN (region convolution neural network) model, the color images, converted gray images, and converted binary images of the printed expiration date are trained and then tested, and each detection rates are compared. The detection performance of expiration date printed on the package by the proposed method showed the same detection performance as that of conventional vision-based inspection system.

  • PDF

Football match intelligent editing system based on deep learning

  • Wang, Bin;Shen, Wei;Chen, FanSheng;Zeng, Dan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.10
    • /
    • pp.5130-5143
    • /
    • 2019
  • Football (soccer) is one of the most popular sports in the world. A huge number of people watch live football matches by TV or Internet. A football match takes 90 minutes, but viewers may only want to watch a few highlights to save their time. As far as we know, there is no such a product that can be put into use to achieve intelligent highlight extraction from live football matches. In this paper, we propose an intelligent editing system for live football matches. Our system can automatically extract a series of highlights, such as goal, shoot, corner kick, red yellow card and the appearance of star players, from the live stream of a football match. Our system has been integrated into live streaming platforms during the 2018 FIFA World Cup and performed fairly well.

A Study on Performance of the Wire/Wireless Integration Fire Detection System (유무선통합화재감지시스템 성능에 관한 연구)

  • Jung, Jong-Jin;SaKong, Seong-Ho
    • Fire Science and Engineering
    • /
    • v.24 no.2
    • /
    • pp.178-184
    • /
    • 2010
  • In this study, a smoke or a heat which occurs by a fire is perceived by wireless detector, this signal is transmitted to the receiving device by the wireless installation which is not the wire device and wire/wireless integration system which sends this signal to main server via wire system is proposed. In addition wireless heat/smoke detector, wireless module, firmware and wire/wireless integration controller were developed and for verifying regarding the efficiency and applicability of wire/wireless installation actual place application experiment was really accomplished with a transmission tower, a multipurpose building, and a station etc of the subway. The experimental result, it could operate the system which is proposed normally with all experimental object ones and, future actual place application possibility could verify.

A Real-time Bus Arrival Notification System for Visually Impaired Using Deep Learning (딥 러닝을 이용한 시각장애인을 위한 실시간 버스 도착 알림 시스템)

  • Seyoung Jang;In-Jae Yoo;Seok-Yoon Kim;Youngmo Kim
    • Journal of the Semiconductor & Display Technology
    • /
    • v.22 no.2
    • /
    • pp.24-29
    • /
    • 2023
  • In this paper, we propose a real-time bus arrival notification system using deep learning to guarantee movement rights for the visually impaired. In modern society, by using location information of public transportation, users can quickly obtain information about public transportation and use public transportation easily. However, since the existing public transportation information system is a visual system, the visually impaired cannot use it. In Korea, various laws have been amended since the 'Act on the Promotion of Transportation for the Vulnerable' was enacted in June 2012 as the Act on the Movement Rights of the Blind, but the visually impaired are experiencing inconvenience in using public transportation. In particular, from the standpoint of the visually impaired, it is impossible to determine whether the bus is coming soon, is coming now, or has already arrived with the current system. In this paper, we use deep learning technology to learn bus numbers and identify upcoming bus numbers. Finally, we propose a method to notify the visually impaired by voice that the bus is coming by using TTS technology.

  • PDF

Optimization of Memristor Devices for Reservoir Computing (축적 컴퓨팅을 위한 멤리스터 소자의 최적화)

  • Kyeongwoo Park;HyeonJin Sim;HoBin Oh;Jonghwan Lee
    • Journal of the Semiconductor & Display Technology
    • /
    • v.23 no.1
    • /
    • pp.1-6
    • /
    • 2024
  • Recently, artificial neural networks have been playing a crucial role and advancing across various fields. Artificial neural networks are typically categorized into feedforward neural networks and recurrent neural networks. However, feedforward neural networks are primarily used for processing static spatial patterns such as image recognition and object detection. They are not suitable for handling temporal signals. Recurrent neural networks, on the other hand, face the challenges of complex training procedures and requiring significant computational power. In this paper, we propose memristors suitable for an advanced form of recurrent neural networks called reservoir computing systems, utilizing a mask processor. Using the characteristic equations of Ti/TiOx/TaOy/Pt, Pt/TiOx/Pt, and Ag/ZnO-NW/Pt memristors, we generated current-voltage curves to verify their memristive behavior through the confirmation of hysteresis. Subsequently, we trained and inferred reservoir computing systems using these memristors with the NIST TI-46 database. Among these systems, the accuracy of the reservoir computing system based on Ti/TiOx/TaOy/Pt memristors reached 99%, confirming the Ti/TiOx/TaOy/Pt memristor structure's suitability for inferring speech recognition tasks.

  • PDF

Information Technology for Mobile Perimeter Security System Creation

  • Mazin Al Hadidi;Jamil S. Al-Azzeh;Lobanchikova N.;Kredentsar S.;Odarchenko R.;Opirskyy I.;Seilova N.
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.10
    • /
    • pp.63-70
    • /
    • 2024
  • This paper is about information technology of creation of mobile (of rapid deployment) security systems of the area perimeter. This system appears to be a complex of models and methods, information, software and hardware means that are interacted with users during decision-making and control of implementation for management solutions. The proposed information technology aimed at improving the protection level for security departments by automating the process of dangers detection for perimeters and decision-making for alarm. The structural model of the system, the model of system's components interaction and the model of identifying the subjects of emergencies threats have been proposed. A method for identifying unauthorized access to the perimeter of the protected object, using the production model of knowledge representation, was created. It is a set of linguistic expressions (such as "IF-THEN") and knowledge matrix. The method of ranking for objects, which are threats of unauthorized access to the perimeter for protected area, has been proposed. Practical value of work consists in the possibility of the use this information technology by perimeter's security systems of various objects. Proposed models are complete and suitable for the hardware and software implementation.

Automatic Detection of Malfunctioning Photovoltaic Modules Using Unmanned Aerial Vehicle Thermal Infrared Images

  • Kim, Dusik;Youn, Junhee;Kim, Changyoon
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.34 no.6
    • /
    • pp.619-627
    • /
    • 2016
  • Cells of a PV (photovoltaic) module can suffer defects due to various causes resulting in a loss of power output. As a malfunctioning cell has a higher temperature than adjacent normal cells, it can be easily detected with a thermal infrared sensor. A conventional method of PV cell inspection is to use a hand-held infrared sensor for visual inspection. The main disadvantages of this method, when applied to a large-scale PV power plant, are that it is time-consuming and costly. This paper presents an algorithm for automatically detecting defective PV panels using images captured with a thermal imaging camera from an UAV (unmanned aerial vehicle). The proposed algorithm uses statistical analysis of thermal intensity (surface temperature) characteristics of each PV module to verify the mean intensity and standard deviation of each panel as parameters for fault diagnosis. One of the characteristics of thermal infrared imaging is that the larger the distance between sensor and target, the lower the measured temperature of the object. Consequently, a global detection rule using the mean intensity of all panels in the fault detection algorithm is not applicable. Therefore, a local detection rule was applied to automatically detect defective panels using the mean intensity and standard deviation range of each panel by array. The performance of the proposed algorithm was tested on three sample images; this verified a detection accuracy of defective panels of 97% or higher. In addition, as the proposed algorithm can adjust the range of threshold values for judging malfunction at the array level, the local detection rule is considered better suited for highly sensitive fault detection compared to a global detection rule. In this study, we used a panel area extraction method that we previously developed; fault detection accuracy would be improved if panel area extraction from images was more precise. Furthermore, the proposed algorithm contributes to the development of a maintenance and repair system for large-scale PV power plants, in combination with a geo-referencing algorithm for accurate determination of panel locations using sensor-based orientation parameters and photogrammetry from ground control points.