• Title/Summary/Keyword: object detection system

Search Result 1,079, Processing Time 0.031 seconds

A study in fault detection and diagnosis of induction motor by clustering and fuzzy fault tree (클러스터링과 fuzzy fault tree를 이용한 유도전동기 고장 검출과 진단에 관한 연구)

  • Lee, Seong-Hwan;Shin, Hyeon-Ik;Kang, Sin-Jun;Woo, Cheon-Hui;Woo, Gwang-Bang
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.4 no.1
    • /
    • pp.123-133
    • /
    • 1998
  • In this paper, an algorithm of fault detection and diagnosis during operation of induction motors under the condition of various loads and rates is investigated. For this purpose, the spectrum pattern of input currents is used in monitoring the state of induction motors, and by clustering the spectrum pattern of input currents, the newly occurrence of spectrum patterns caused by faults are detected. For the diagnosis of the fault detected, a fuzzy fault tree is designed, and the fuzzy relation equation representing the relation between an induction motor fault and each fault type, is solved. The solution of the fuzzy relation equation shows the possibility of occurence of each fault. The results obtained are summarized as follows : (1) Using clustering algorithm by unsupervised learning, an on-line fault detection method unaffected by the characteristics of loads and rates is implemented, and the degree of dependency for experts during fault detection is reduced. (2) With the fuzzy fault tree, the fault diagnosis process become systematic and expandable to the whole system, and the diagnosis for sub-systems can be made as an object-oriented module.

  • PDF

Detection Accuracy Improvement of Hang Region using Kinect (키넥트를 이용한 손 영역 검출의 정확도 개선)

  • Kim, Heeae;Lee, Chang Woo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.11
    • /
    • pp.2727-2732
    • /
    • 2014
  • Recently, the researches of object tracking and recognition using Microsoft's Kinect are being actively studied. In this environment human hand detection and tracking is the most basic technique for human computer interaction. This paper proposes a method of improving the accuracy of the detected hand region's boundary in the cluttered background. To do this, we combine the hand detection results using the skin color with the extracted depth image from Kinect. From the experimental results, we show that the proposed method increase the accuracy of the hand region detection than the method of detecting a hand region with a depth image only. If the proposed method is applied to the sign language or gesture recognition system it is expected to contribute much to accuracy improvement.

Design of Pedestrian Detection Algorithm Using Feature Data in Multiple Pedestrian Tracking Process (다수의 보행자 추적과정에서 특징정보를 이용한 보행자 검출 알고리즘 설계)

  • Han, Myung-ho;Ryu, Chang-ju;Lee, Sang-duck;Han, Seung-jo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.22 no.4
    • /
    • pp.641-647
    • /
    • 2018
  • Recently, CCTV, which provides video information for multiple purposes, has been transformed into an intelligent, and the range of automation applications increased using the computer vision. A highly reliable detection method must be performed for accurate recognition of pedestrians and vehicles and various methods are being studied for this purpose. In such an object detection system. In this paper, we propose a method to detect a large number of pedestrians by acquiring three characteristic information that features of color information using HSI, motion vector information and shaping information using HOG feature information of a pedestrian in a situation where a large number of pedestrians are moving. The proposed method distinguishes each pedestrian while minimizing the failure or confusion of pedestrian detection and tracking. Also when pedestrians approach or overlap, pedestrians are identified and detected using stored frame feature data.

Crack Detection on the Road in Aerial Image using Mask R-CNN (Mask R-CNN을 이용한 항공 영상에서의 도로 균열 검출)

  • Lee, Min Hye;Nam, Kwang Woo;Lee, Chang Woo
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.24 no.3
    • /
    • pp.23-29
    • /
    • 2019
  • Conventional crack detection methods have a problem of consuming a lot of labor, time and cost. To solve these problems, an automatic detection system is needed to detect cracks in images obtained by using vehicles or UAVs(unmanned aerial vehicles). In this paper, we have studied road crack detection with unmanned aerial photographs. Aerial images are generated through preprocessing and labeling to generate morphological information data sets of cracks. The generated data set was applied to the mask R-CNN model to obtain a new model in which various crack information was learned. Experimental results show that the cracks in the proposed aerial image were detected with an accuracy of 73.5% and some of them were predicted in a certain type of crack region.

Shipping Container Load State and Accident Risk Detection Techniques Based Deep Learning (딥러닝 기반 컨테이너 적재 정렬 상태 및 사고 위험도 검출 기법)

  • Yeon, Jeong Hum;Seo, Yong Uk;Kim, Sang Woo;Oh, Se Yeong;Jeong, Jun Ho;Park, Jin Hyo;Kim, Sung-Hee;Youn, Joosang
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.11 no.11
    • /
    • pp.411-418
    • /
    • 2022
  • Incorrectly loaded containers can easily knock down by strong winds. Container collapse accidents can lead to material damage and paralysis of the port system. In this paper, We propose a deep learning-based container loading state and accident risk detection technique. Using Darknet-based YOLO, the container load status identifies in real-time through corner casting on the top and bottom of the container, and the risk of accidents notifies the manager. We present criteria for classifying container alignment states and select efficient learning algorithms based on inference speed, classification accuracy, detection accuracy, and FPS in real embedded devices in the same environment. The study found that YOLOv4 had a weaker inference speed and performance of FPS than YOLOv3, but showed strong performance in classification accuracy and detection accuracy.

ALGORITHMS FOR MOVING OBJECT DETECTION: YSTAR-NEOPAT SURVEY PROGRAM (이동천체 후보 검출을 위한 알고리즘 개발: YSTAR-NEOPAT 탐사프로그램)

  • Bae, Young-Ho;Byun, Yong-Ik;Kang, Yong-Woo;Park, Sun-Youp;Oh, Se-Heon;Yu, Seoung-Yeol;Han, Won-Young;Yim, Hong-Suh;Moon, Hong-Kyu
    • Journal of Astronomy and Space Sciences
    • /
    • v.22 no.4
    • /
    • pp.393-408
    • /
    • 2005
  • We developed and compared two automatic algorithms for moving object detections in the YSTAR-NEOPAT sky survey program. One method, called starlist comparison method, is to identify moving object candidates by comparing the photometry data tables from successive images. Another method, called image subtraction method, is to identify the candidates by subtracting one image from another which isolates sources moving against background stars. The efficiency and accuracy of these algorithms have been tested using actual survey data from the YSTAR-NEOPAT telescope system. For the detected candidates, we performed eyeball inspection of animated images to confirm validity of asteroid detections. Main conclusions include followings. First, the optical distortion in the YSTAR-NEOPAT wide-field images can be properly corrected by comparison with USNO-B1.0 catalog and the astrometric accuracy can be preserved at around 1.5 arcsec. Secondly, image subtraction provides more robust and accurate detection of moving objects. For two different thresholds of 2.0 and $4.0\sigma$, image subtraction method uncovered 34 and 12 candidates and most of them are confirmed to be real. Starlist comparison method detected many more candidates, 60 and 6 for each threshold level, but nearly half of them turned out to be false detections.

DOVE : A Distributed Object System for Virtual Computing Environment (DOVE : 가상 계산 환경을 위한 분산 객체 시스템)

  • Kim, Hyeong-Do;Woo, Young-Je;Ryu, So-Hyun;Jeong, Chang-Sung
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.6 no.2
    • /
    • pp.120-134
    • /
    • 2000
  • In this paper we present a Distributed Object oriented Virtual computing Environment, called DOVE which consists of autonomous distributed objects interacting with one another via method invocations based on a distributed object model. DOVE appears to a user logically as a single virtual computer for a set of heterogeneous hosts connected by a network as if objects in remote site reside in one virtual computer. By supporting efficient parallelism, heterogeneity, group communication, single global name service and fault-tolerance, it provides a transparent and easy-to-use programming environment for parallel applications. Efficient parallelism is supported by diverse remote method invocation, multiple method invocation for object group, multi-threaded architecture and synchronization schemes. Heterogeneity is achieved by automatic data arshalling and unmarshalling, and an easy-to-use and transparent programming environment is provided by stub and skeleton objects generated by DOVE IDL compiler, object life control and naming service of object manager. Autonomy of distributed objects, multi-layered architecture and decentralized approaches in hierarchical naming service and object management make DOVE more extensible and scalable. Also,fault tolerance is provided by fault detection in object using a timeout mechanism, and fault notification using asynchronous exception handling methods

  • PDF

people counting system using single camera (카메라영상을 이용한 people counting system)

  • Jeong, Ha-Wook;Chang, Hyung-Jin;Baek, Young-Min;Kim, Soo-Wan;Choi, Jin-Young
    • Proceedings of the IEEK Conference
    • /
    • 2009.05a
    • /
    • pp.172-174
    • /
    • 2009
  • This paper describes an implementation method for the 'People Counting System' which detects and tracks moving people using a fixed single camera. This system proposes the method of improving performances by compensating weakness of existing algorithm. For increasing effect of detection, this system uses Single Gaussian Background Modeling which is more robust at noise and has adaptiveness. It minimizes unnecessarily detected area that is a limitation of the detecting method by using the background differences. And this system prevents additional detecting problems by removing shadow. Also, This system solves the problems of segmentation and union of people by using a new method. This method can work appropriately, if the angle of camera would not strictly vertical or the direction of shadow were lopsided. Also, by using integration System, it can solve a number of special cases as many as possible. For example, if the system fails to tracking, it will detect the object again and will make it possible to count moving people.

  • PDF

Reliable extraction of moving edge segments in the dynamic environment (동적인 입력환경에서 신뢰성이 있는 이동 에지세그먼트 검출)

  • Ahn Ki-Ok;Lee June-Hyung;Chae Ok-Sam
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.43 no.5 s.311
    • /
    • pp.45-51
    • /
    • 2006
  • Recently, the IDS(Intrusion Detection System) using a video camera is an important part of the home security systems which start gaining popularity. However, the video intruder detection has not been widely used in the home surveillance systems due to its unreliable performance in the environment with abrupt illumination change. In this paper, we propose an effective moving edge extraction algerian from a sequence image. The proposed algorithm extracts edge segments from current image and eliminates the background edge segments by matching them with reference edge list, which is updated at every frame, to find the moving edge segments. The test results show that it can detect the contour of moving object in the noisy environment with abrupt illumination change.

Real-time Worker Safety Management System Using Deep Learning-based Video Analysis Algorithm (딥러닝 기반 영상 분석 알고리즘을 이용한 실시간 작업자 안전관리 시스템 개발)

  • Jeon, So Yeon;Park, Jong Hwa;Youn, Sang Byung;Kim, Young Soo;Lee, Yong Sung;Jeon, Ji Hye
    • Smart Media Journal
    • /
    • v.9 no.3
    • /
    • pp.25-30
    • /
    • 2020
  • The purpose of this paper is to implement a deep learning-based real-time video analysis algorithm that monitors safety of workers in industrial facilities. The worker's clothes were divided into six classes according to whether workers are wearing a helmet, safety vest, and safety belt, and a total of 5,307 images were used as learning data. The experiment was performed by comparing the mAP when weight was applied according to the number of learning iterations for 645 images, using YOLO v4. It was confirmed that the mAP was the highest with 60.13% when the number of learning iterations was 6,000, and the AP with the most test sets was the highest. In the future, we plan to improve accuracy and speed by optimizing datasets and object detection model.